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The endoplasmic reticulum (ER) is a dynamic pleiomorphic

organelle containing continuous but distinct subdomains. The

diversity of ER structures parallels its many functions, including

secretory protein biogenesis, lipid synthesis, drug metabolism

and Ca2+ signaling. Recent studies are revealing how elaborate

ER structures arise in response to subtle changes in protein

levels, dynamics, and interactions as well as in response to

alterations in cytosolic ion concentrations. Subdomain

formation appears to be governed by principles of self-

organization. Once formed, ER subdomains remain malleable

and can be rapidly transformed into alternative structures in

response to altered conditions. The mechanisms that modulate

ER structure are likely to be important for the generation of the

characteristic shapes of other organelles.
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Introduction
The many roles of the endoplasmic reticulum (ER)

demand a high surface area and a distribution throughout

the cytoplasm. The ER organizes the large amount of

membrane required [1] by folding it into tubular or

lamellar structures, generating a complex architecture

that varies in response to functional requirements. Varia-

tions in ER organization are found not only in different

cell types but also in different regions of the organelle

within the same cell. Indeed, although the ER is a single,

spatially continuous compartment [2,3], it is composed of

structurally and functionally different subdomains.

Among these, the nuclear envelope and the peripheral

ER are the most obvious [4,5], but the ER contains other

specialized subcompartments, such as the junctional

regions between the ER and essentially every other
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organelle, and the exit sites where COPII-coated trans-

port vesicles are generated [6]. As revealed by live cell

imaging, many of these subdomains appear to be in a

constant state of flux [3], suggesting that the ER has

tremendous flexibility to alter structural organization, as

necessary, to adapt to constantly changing cellular

requirements. Indeed, physiological and developmental

processes may rely on rapid ER restructuring, like that

occurring in egg cells upon fertilization, in response to

changes in cytosolic Ca2+ concentration [7].

Perhaps the first subdivision of the ER to be recognized

was that between rough (ribosome-covered) and smooth

(ribosome-free) domains (RER and SER) [8]. In many

cells, RER and SER do not occupy spatially segregated

regions, and small ribosome-free areas are interspersed

with ribosome-covered regions. This type of ER is gen-

erally organized in sheets (cisternae) or in a branching

tubular network typically seen in many cultured mamma-

lian cells. Such networks are characterized by fairly straight

tubules, which branch at tripartite junctions to generate a

polygonal meshwork [5,9]. Only in some cells (e.g. hepa-

tocytes, steroid-synthesizing cells and neurons) do the

smooth and rough portions of the ER occupy different

regions of the cytoplasm. In these cases, the SER differs

from the RER on the basis not only of its ribosome-free

surface but also of its distinctive spatial organization.

In this review, we will discuss recent work on the factors

that determine the formation of the ER branching tubular

network, as well as on the mechanisms underlying the

diverse architectural arrangements of the SER and its

segregation from RER.

Homotypic fusion
As is true for all membrane-bounded organelles, ER

elements are capable of fusing with each other and this

activity is necessary both for the dynamic restructuring of

the network that constantly occurs in vivo [2,3,10�], and

for the in vitro reconstitution of networks from ER-

derived vesicles ([11��] and references therein). The bulk

of existing evidence suggests that more than one fusion

mechanism is involved.

Using a biochemical assay, Latterich et al. [12] first

showed that S. cerevisiae Cdc48, an AAA ATPase with

homology to the well-characterized fusion protein N-

ethylmaleimide sensitive factor (NSF or Sec18), is

required for ER-derived vesicle fusion. At the same time,

the mammalian orthologue of Cdc48, p97, was shown to

be involved in the reconstitution of Golgi cisternae from

mitotic Golgi fragments [13]. Later, evidence was
www.sciencedirect.com
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presented that Cdc48 works in conjunction with the ER-

localized target-soluble NSF attachment protein (SNAP)

receptor (t-SNARE) Ufe1p [14]. Subsequent work has

confirmed the role of p97 in the dynamics of ER archi-

tecture [15,16], but also indicates the participation of

additional mechanisms. Thus, antibodies against p97 or

its cofactors only partially disrupt ER organization in

living cells [17] or in cell-free reconstituted systems

[18]. Moreover, S. cerevisiae Cdc48 mutants appear to

have normal ER organization [19].

At least one p97-independent fusion activity appears to

be intrinsic to the ER membrane itself. ER-derived

microsomes presumably depleted of all cytosolic proteins

(such as NSF or p97) show GTP-dependent (but ATP-

independent) fusion activity [11��,20–22], suggesting the

involvement of a cytosol-independent fusion machine

tightly associated with the ER membrane. Although this

fusion activity was described many years ago, its mole-

cular components have not yet been identified.

Formation of tubular network
Phospholipid bilayers do not spontaneously arrange into

highly curved structures; therefore, there is much interest

in the factors that force organelle membranes to form

tubules [23,24��]. All the compartments of the exo-endo-

cytic pathway are capable of forming tubules, and this

process is fundamental for membrane traffic. However, in

the case of the ER, tubules represent a basic anatomical

feature. Much attention has been focused on the role of

the cytoskeleton in organizing ER tubular networks

[3,10�,25], but recent work has demonstrated that pro-

teins intrinsic to the ER underlie tubule formation inde-

pendently of cytoskeletal elements.

Proteins mediating ER-microtubule interactions

The role of the cytoskeleton in regulating the spatial

distribution of the ER is well known. In animal cells,

microtubules are the main players, whereas in fungal and

plant cells actin cables play a more prominent role (for

reviews, see [2,26]). The interaction of the ER with

microtubules is mediated both by motor proteins, which

permit extension of tubules along stationary microtu-

bules, and by non-motor proteins that mediate movement

of ER tubules attached to motile or polymerizing micro-

tubules [10�]. More than one ER protein is involved in the

latter type of interaction. The first one to be identified

was CLIMP-63, an integral ER membrane protein

excluded from the nuclear envelope [27], whose cytosolic

domain is reported to directly interact with microtubules

[28]. Overexpression of CLIMP-63 causes the ER to

reorganize, forming circular strands that align with micro-

tubule bundles [28]. A subsequent study [29�] has shown

that the interaction of CLIMP-63 with microtubules is

regulated by mitotic phosphorylation, suggesting a

mechanism for disruption of ER–microtubule interaction

during mitosis. Interestingly, the authors found that
www.sciencedirect.com
overexpression of a mitotic phospho-mimetic form of

CLIMP-63 leads to a collapse of the ER around the

nucleus, suggesting that the mutant CLIMP-63 competes

with the endogenous protein for factor(s) that mediate or

facilitate the interaction with microtubules. Consistent

with this idea, Farah et al. [30] have recently reported that

CLIMP-63 interacts with the microtubule-associated pro-

tein MAP-2, and that this association explains the specific

localization of RER in neuronal dendrites and its exclu-

sion from the axon.

Novel players in the ER–microtubule interaction are the

VAP-B/Nir3 couple [31�] and p22 [32��]. p22 is a myris-

toylated, EF-Hand-domain-containing protein that binds

microtubules and Ca2+. It associates with ER membranes

in a Ca2+-dependent manner, and thus provides a Ca2+-

regulated link between the ER and the microtubule

cytoskeleton. Concerning the VAP-B/Nir 3 couple, VAPs

(vesicle-associated membrane protein interacting pro-

teins) are C-tail-anchored proteins [33] of the ER that

function as adaptors for a variety of peripheral proteins

carrying a particular sequence, the FFAT (two phenyla-

lanines in an acidic tract) motif [34,35,36��]. The majority

of known FFAT-containing proteins possess lipid binding

domains and are implicated in interorganellar lipid trans-

port. Also, Nir3, a member of the highly conserved family

of Nir/rdgB proteins, has a phosphatidylinositol transfer

domain [37]; however, when overexpressed together with

VAP-B, it causes rearrangement of the ER along circular

microtubule bundles [31�], similar to the structures seen

after overexpression of CLIMP-63 [28]. Interestingly, a

point mutation in the VAP-B protein causes familial

amyotrophic lateral sclerosis in eight Brazilian families

with common Portuguese ancestry [38,39], illustrating

once more the importance of cell biological studies for

the understanding of disease mechanisms.

In vitro reconstitution of tubular networks

A molecular dissection of factors required for ER tubule

formation requires the development of suitable cell-free

systems. Tubule network formation from cell extracts or

isolated microsomes has been followed by differential

interference contrast by darkfield illumination micro-

scopy, or, more frequently, by fluorescence microscopy

of appropriately labeled microsomal membranes [3]. Sev-

eral studies in which network formation was observed on a

glass surface demonstrated a direct role for microtubules

and microtubule motors in tubule formation (reviewed in

[2]). Recently, two groups [40,41] have analyzed tubule

generation from giant unilamellar lipid vesicles tethered

to microtubules via microtubule motors. Interestingly, in

the presence of energy and in the absence of any other

additional proteins, branching tubules were readily cre-

ated in these in vitro systems.

Different results have been obtained by the Rapoport

group, who developed an assay that follows tubule
Current Opinion in Cell Biology 2006, 18:358–364
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formation in bulk solution [11��,22]. Using this assay,

Dreier and Rapoport [22] showed that tubule generation

from Xenopus oocyte-derived light microsomes could

occur in the absence of microtubules. Under appropriate

salt conditions, Voeltz et al. [11��] could observe tubule

formation even in the absence of any cytosolic protein,

prompting the authors to search for ER membrane pro-

teins involved in the process. Taking advantage of the

exquisite sensitivity of the tubulation reaction to sulfhy-

dryl blocking reagents, the authors were able to identify

the integral membrane protein Reticulon (Rtn)4a as the

sulfhydryl-group-containing polypeptide implicated in

tubule formation. Rtn4a is a member of a family of highly

expressed ER-localized membrane proteins that have

been associated with a variety of roles [42]. Consistent

with the proposed role of Rtn 4a in ER tubulation, Voeltz

et al. [11��] found that in animal cells Rtn4a was enriched

on ER tubules but depleted from sheets and from the

nuclear envelope. A similar distribution was found for the

Rtn homologues in yeast. Moreover, knockout of the two

yeast Rtn homologues together with an interacting part-

ner, DP1/Yop1p, disrupted the tubular organization the

yeast cortical ER. Finally, the authors present evidence

that reticulons have a hairpin topology in the cytoplasmic

leaflet of the ER membrane. They suggest that this

unusual topology could produce a wedge-shaped intra-

membrane domain that would cause bending of the

phospholipid bilayer, similar to the hypothesized action

of caveolin at the cell surface [43].

Voeltz et al. [11��] bring a new and unexpected ingredient

to the field of ER morphogenesis, and their results will

undoubtedly lead to future work aimed at testing the

predictions of their model. For instance, cells should be

able to modulate the extent of tubular networks by

changes in reticulon levels. It will be interesting to

investigate the function of reticulons in microsomes from

sources other than Xenopus oocytes and to investigate

whether reticulon levels relative to total ER decrease

in differentiating cells such as developing plasma cells or

pancreatic acinar cells that accumulate stacked rough ER

cisternae. In this respect, the model of Voeltz et al. [11��]
may involve additional complexities. For example, Het-

zer et al. [18] combined Xenopus microsomes with chro-

matin to form smooth nuclear-envelope-like structures

around the chromatin. Nuclear envelope assembly

involved the formation of a tubular network intermediate

before progressing to the final sheet structures. In this

system, reticulons would be expected to remain in the

sheet structure, and the tubular transition state thus

suggests that membrane curvature can be regulated with-

out changes in membrane protein composition. An intri-

guing possibility is that reticulon function is regulated by

post-translational modification(s).

Although necessary for cortical tubular ER formation in

yeast, Rtns and DP1/Ypo1p are not the only proteins
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required for network formation, since deletion of another

ER protein (Ice2p) also causes disruption of the yeast

cortical meshwork [44�]. In addition, there is evidence

that the ribosomes themselves may contribute to ER

geometry [19]. Thus, multiple factors, some acting auton-

omously on the ER membrane, others acting in concert

with cytosolic elements, define the overall structure.

Smooth ER
SER is generated when the ER surface area required to

house a subset of resident membrane proteins exceeds that

needed for ER-associated protein synthesis. In some tis-

sues and in some cultured cells, SER segregates from RER

and assumes distinctive architectural organizations. The

most common form of SER is a tubular network with

different characteristics from the polygonal meshwork

typically observed in cultured cells. The SER tubules

are generally more convoluted than those of RER, and

the branch points are more frequent, so that a sponge-like

structure is generated ([5], illustrated in [45]). We refer to

this SER architecture as ‘random tubular’. In some tissues,

and more commonly in tissue culture cells that overexpress

ER membrane proteins, SER forms parallel arrays of

stacked cisternae. Such stacked cisternae may be lined

up against the nuclear envelope (karmellae), or be dis-

tributed elsewhere in the cytoplasm (lamellae); in addi-

tion, they may form concentric whorls or regular sinusoidal

arrays with cubic symmetry, often referred to as ‘crystal-

loid’ ER. Finally, the high expression of the enzyme

hydroxy-methylglutaryl (HMG)-CoA reductase induces

tubules that align into bundles with hexagonal symmetry

([46��] and references therein). Snapp and coworkers

[46��] introduced the term OSER (organized smooth

ER) to describe all of these different types of stacked

smooth ER (illustrated in Figure 1). A fascinating observa-

tion is that the structure of sinusoidal ER with cubic

symmetry (cubic membranes) corresponds to mathemati-

cally described minimal periodic surfaces [47], built of

repetitions of saddle-shaped elements. Although such

surfaces are highly curved, they in fact have a mean

mathematical curvature of zero, because at every point

convexity and concavity exactly compensate for each other

[48]. A similar compensation between convexity and con-

cavity is also present at branching points in polygonal

meshwork ER. Thus, branching could represent a thermo-

dynamically favorable arrangement for ER tubules.

A number of studies have implicated head-to-head dimer-

ization of the cytosolic domains of overexpressed ER

membrane proteins in cisternal stacking [49–53]. In the

study of Snapp et al., this hypothesis was directly tested.

Snapp and co-workers compared the ability of different

GFP fusion proteins — all with the GFP moiety exposed

to the cytosol — to induce OSER in mammalian

cells [46��]. The commonly used EGFP dimerizes with

low affinity (Kd = 0.11 mM) [54], and EGFP fusions

(or spectral variants thereof) to the membrane anchors
www.sciencedirect.com
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Figure 1

Electron micrographs illustrating different forms of OSER. Shown are: (a) a karmella, (b) a lamella, (c) a whorl, (d,e) sinusoidal arrays with cubic

symmetry, and (f) a bundle of packed tubules with hexagonal symmetry. In (a), N indicates the nucleus; at the distal side of the karmella is a

forming cisterna that appears to be generated by the fusion of tubules. In (b) and (d), the arrows indicate continuity with the cytosolic space;

note that the electron-dense constant width space present in all the OSER structures corresponds to the cytosolic space bridging the cisternae.

In (e) and (f), the asterisk indicates the lumenal space. Note, in (b) and (c), the continuity with sinusoidal ER of the lamella and whorl, respectively.

Note also, in (c) and (d), the close association of mitochondria (M) with OSER structures. Structures shown in (a–e) were induced in cells

transfected with a GFP–cytochrome b5 fusion protein [44�]. ‘Crystalloid’ ER with hexagonal symmetry (f) is expressed in compactin-resistant UT-1

cells expressing high levels of HMG-CoA reductase [63]. Scale bars: (a,b,c,f) 200 nm; (c,d) 600 nm. (f) is reproduced with permission from the

Company of Biologists from [59].
of ER-localized proteins generated prominent OSER

structures. The space between the cytosolic faces of

the stacked membranes was too small to lodge ribosomes

but was compatible with the presence of GFP-GFP

bridges (see Figure 1). When similar fusion proteins —

made with GFP mutants in which the dimerization
www.sciencedirect.com
affinity is reduced nearly 100 fold — were tested, OSER

induction was not observed. Instead, abundant random

tubular SER was induced, suggesting that membrane

proliferation had occurred without concomitant cisternal

stacking. Importantly, fluorescence recovery after photo-

bleaching (FRAP) experiments showed high diffusional
Current Opinion in Cell Biology 2006, 18:358–364
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mobility of all the GFP fusion proteins, including those

that induced OSER: the transfected proteins diffused

rapidly also within tightly packed cisternal structures

and exchanged freely with the remaining ER, organized

as a polygonal meshwork. In other words, ER cisternae

that appear to be ‘zipped’ together and to be arranged

into ‘crystalloid’ structures in fact allow free diffusion of

the dimerizing proteins responsible for the packing.

Thus, low-affinity transient interactions can cause dra-

matic restructuring of the ER into self-organized

domains. The simple properties of protein–protein inter-

actions, lipid organization, and levels of the interacting

proteins combine to create emergent structures that

were not predicted on the basis of the individual

components.

The work of Snapp and coworkers [46��] has implications

for the mechanisms of both physiological and pathological

membrane stacking. Thus, the stacked arrangement of

membranes, as observed with Golgi cisternae [55] or

thylakoid membranes, could be caused by weak, transient

interactions like the ones involved in OSER formation,

rather than requiring a specific matrix or ‘glue’ for holding

them together. Such transient interactions could also

underlie junctions between the ER and other organelles

and could be subject to regulation. For instance, Takei

et al. [49] found that in Purkinje cells stacking of IP3-

receptor-rich ER cisternae occurs rapidly in response to

hypoxic conditions, suggesting post-translational regula-

tion of OSER formation.

Regarding the implications for pathology, OSER has

been observed to form in response to the expression of

mutant, disease-causing proteins, like torsin A [56], DF-

cystic fibrosis transmembrane conductance regulator

(CFTR) [57] and mutant peripheral myelin protein-22

(PMP-22) [58], which are responsible for early onset

generalized torsion dystonia, cystic fibrosis and inherited

peripheral neuropathies (Dejerine Sottas syndrome and

Charcot-Marie-Tooth 1A), respectively. OSER formation

by these mutant proteins may in some way depend on

their interaction with the ER chaperone calnexin [57–59].

However, the role of calnexin in OSER induction is

unclear and deserves further investigation.

An open question on OSER formation concerns which

factors determine the prevalence of different OSER

forms. While karmellae, lamellae and whorls are generally

observed with all OSER-inducing proteins, the formation

of ‘crystalloid’ ER with hexagonal or cubic symmetry

appears to be protein-specific. For example, HMG-CoA

reductase, which has multiple transmembrane domains,

induces OSER with hexagonal symmetry, while many

single spanning membrane proteins induce sinusoidal ER

with cubic symmetry. Thus, integral membrane proteins

modulate the architecture of SER as well as that of

polygonal ER networks.
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In most studies on SER architecture, segregated SER was

induced by overexpression of an ER membrane protein.

Overexpression of single ER membrane proteins,

whether induced by drugs or by transfection, often causes

proliferation of ER membranes [60]. Thus, in these

studies, ER proliferation correlated with ER restructuring

and the question of whether ER restructuring can occur

independently of proliferation was not addressed.

Recently, Sprocati et al. have developed a system to

reversibly induce segregation of random tubular smooth

ER from polygonal meshwork ER in the absence of

membrane proliferation [61�]. The system consists of a

cell line stably transfected with a GFP tail-anchored

construct. The ER of these cells, although more abundant

than in nontransfected cells, maintains the normal poly-

gonal meshwork structure. However, treatment with the

drug 1-Phenyl-2-decanoyl-amino-3-morpholino-1-propa-

nol hydrochoride (PDMP) induces the segregation of

random tubular SER patches, which maintain connectiv-

ity with the rest of the ER and partially exclude RER

markers. Interestingly, lipid dyes partition differently

into the patches: the dye DiI-C16, which at the cell

surface prefers more rigid lipid domains, concentrates

more in the SER patches than does the dye FAST DiI,

which has a preference for fluid domains [62], suggesting

that the segregated SER domains differ from the remain-

ing polygonal meshwork in lipid composition. Most

importantly, these patches are formed without detach-

ment of ribosomes from the ER and are reabsorbed into

the rest of the ER within minutes of withdrawal of the

PDMP. Thus, this system provides a useful model to

investigate rapid structural rearrangements of the ER

structure.

Conclusions
Biochemistry and genomics have helped define the dis-

tinct molecular constituents of each organelle and the

mechanisms by which these molecules are targeted to the

correct intracellular compartment. However, it is equally

important to understand how these molecules modulate

organelle structure. Research of the past few years sug-

gests that many mechanisms compete and cooperate to

determine ER architecture and that elaborate structures

may be formed through processes of self-organization.

Perturbations in the steady state levels of the structural

proteins rapidly shift ER organization and permit the ER

to adapt to changing requirements of the cell. The com-

plex and plastic ER represents a paradigm for under-

standing the factors that shape membrane-bounded

organelles. Unraveling the different factors and how they

interact represents a major challenge in the field of

organelle biogenesis.
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