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The cellular events required for 
unconventional protein secretion in 

eukaryotic pathogens are beginning to be 
revealed. In fungi, extracellular release 
of proteins involves passage through 
the cell wall by mechanisms that are 
poorly understood. In recent years, sev-
eral studies demonstrated that yeast cells 
produce vesicles that traverse the cell 
wall to release a wide range of cellular 
components into the extracellular space. 
These studies suggested that extracellu-
lar vesicle release involves components of 
both conventional and unconventional 
secretory pathways, although the precise 
mechanisms required for this process are 
still unknown. We discuss here cellular 
events that are candidates for regulating 
this interesting but elusive event in the 
biology of yeast cells.

Protein secretion is a widely studied cel-
lular phenomenon. To reach the extracel-
lular milieu, intracellularly synthesized 
proteins are targeted to the cell surface for 
release to the extracellular space.1 In mam-
malian cells, the plasma membrane is the 
final barrier to be crossed during secre-
tion. Such processes, which involve both 
conventional and unconventional mecha-
nisms, have been studied in detail and a 
number of excellent reviews are available 
in the literature.1-6

Secretory systems in microbes 
and mammalian cells show points of 
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convergence and divergence.7 Fungi and 
prokaryotes are surrounded by thick cell 
walls, a key difference in comparison with 
mammalian and other eukaryotic cells 
(e.g., protozoa) that adds significant com-
plexity to secretion systems in these organ-
isms. A number of mechanisms have been 
proposed for the trans-cell wall molecular 
transport in prokaryotes.8 In fungi, how-
ever, the mechanisms required for passage 
of molecules across the cell wall are poorly 
understood. Recently, extracellular vesicle 
release has been described as a mechanism 
used by yeast cells to secrete many mol-
ecules across the cell wall.9-12

Extracellular vesicles produced by 
fungal cells share morphological and bio-
chemical similarities with mammalian 
exosomes,13,14 including an ability to mod-
ulate the function of immune cells.15 Plant 
cells also produce exosome-like vesicles,16 
supporting the notion that vesicular 
release is a mechanism of trans-cell wall 
passage shared by cell-wall containing 
eukaryotes. In contrast to what is observed 
for mammalian exosomes,17 the pathways 
required for extracellular vesicle biogenesis 
and release in both plant and fungal cells 
remain virtually unknown. One remark-
able feature of mammalian exosomes and 
fungal extracellular vesicles is the abun-
dance of cytoplasmic proteins lacking a 
signal peptide that directs proteins to the 
endoplasmic reticulum in conventional 
secretory processes.13,14,18-20



534	 Communicative & Integrative Biology	 Volume 3 Issue 6

were observed in extracellular vesicle sam-
ples obtained from S. cerevisiae cultures.21  
We hypothesize that these enzymes could 
hydrolyze cell wall components to facilitate 
vesicle passage through this cellular barrier.

The methods currently used for vesicle 
purification do not discriminate between 
vesicles of different origins. This implies 
that heterogeneous preparations are 
obtained during vesicle isolation. In this 
context, the possibility that the collection 
of mutations analyzed in our recent study21 
is affecting different types of vesicles can-
not be ruled out. The current knowledge on 
how fungal extracellular vesicles are formed, 
in fact, strongly suggests the involvement of 
multiple—and perhaps still unknown—
pathways of secretion.9,11,13 As recently 
described in independent studies, uncon-
ventional protein secretion can also involve 
autophagosomes,27,28 which are intracellular 
structures whose functions were initially 
attributed to many catabolic steps.29

In autophagy, cytosolic material is 
sequestered by an expanding membrane 
compartment, the phagophore, resulting in 
the formation of a double-membrane vesi-
cle, the autophagosome.29 Autophagosomes 
then fuse with the lysosome/vacuole where, 
as initially supposed, the sequestered mate-
rial is degraded.29 Independent studies, 
however, have shown that yeast cells can 
also direct the autophagic content for secre-
tion, in a process called exophagy.27-29 In 
fact, the autophagic machinery participates 
in the packaging and delivery of the soluble 
yeast protein acyl-Coenzyme A-binding 
protein Acb1 to the cell surface. Therefore, 
these studies suggest the existence of a 
vesicular mechanism that utilizes the same 
machinery for both secretion and degrada-
tion of cellular components. It is interesting 
to note that secretion of Acb1 from yeast as 
well as secretion of the Dictyostelium discoi-
deum Acb1 homologue, AcbA, depends on 
the Golgi associated protein GRASP,27,28,30 
which is apparently required for extracel-
lular vesicle release in yeast cells.21 These 
observations add to an already long list of 
candidates that can regulate vesicle forma-
tion in yeast cells.

After our initial description of fungal 
extracellular vesicles in 2007,12 eight differ-
ent studies showing their functions in fun-
gal physiology or pathogenesis have been 
reported in the literature.13-15,21,22,31-33 Vesicle 

their cargo, so they are not expected 
to interfere with formation of vesicular 
structures outside the cell.6 In our analy-
ses, however, yeast mutants lacking Sec4p, 
a secretory vesicle-associated Rab GTPase 
essential for Golgi-derived exocytosis,6 
had reduced kinetics of vesicle release to 
the extracellular milieu.21 The fact that 
cells with defects in a post-Golgi event of 
secretion, but not with disturbed MVB 
formation, affected vesicle release raised 
an obvious and still unanswered question: 
how is a double layered vesicle secreted 
from yeast cells?

The simplest and more tangible expla-
nation for the release of any extracellu-
lar vesicle is the fusion of MVB with the 
plasma membrane. However, studies by 
our group25,26 clearly show that double-
layered vesicles can bud from the plasma 
membrane of yeast cells (Fig. 1). Therefore, 
one could speculate that proteins required 
for post-Golgi conventional secretion could 
be required for addressing vesicle compo-
nents to the plasma membrane. Vesicles 
would then be formed by membrane bud-
ding and sequential transfer to the cell wall 
and extracellular space. That would be con-
sistent with previous hypotheses raising the 
possibility that formation of extracellular 
vesicles can involve membrane budding.4 
Budding from the plasma membrane would 
also be in line with the complex vesicle com-
position including cytoplasmic elements, as 
observed in our analyses.13,14,21 It remains 
unknown how these vesicles traverse the cell 
wall, but many cell wall degrading enzymes 

In a recent study, we evaluated the 
contribution of both conventional and 
unconventional pathways of secretion in 
the formation of extracellular vesicles in 
the model yeast Saccharomyces cerevisiae.21 
Our approach was based on the study of 
mutants with defects in two major secre-
tion pathways: conventional post-Golgi 
secretion2 and exosome formation, a mech-
anism of unconventional secretion.17 The 
use of this model was based on the facts 
that: (1) genes required for conventional, 
post-Golgi secretion were implicated in 
the formation of extracellular vesicles in 
fungi;22 and (2) exosomes and fungal vesi-
cles share many similarities.18-20,23,24

Defects in the formation of multive-
sicular bodies (MVB) are expected to 
directly affect the formation of exosomes.17 
Surprisingly, yeast mutants with defects 
in MVB formation produced similar  
amounts of extracellular vesicles in 
comparison to WT cells.21 The protein 
composition of vesicles from WT and 
mutant cells was essentially equivalent, 
but approximately 50% of these vesicu-
lar proteins had their abundance modi-
fied in mutant cells. Remarkably, most 
of the proteins (75%) found in vesicular 
fractions lacked signal peptides. These 
puzzling results indicate that, although 
MVB-related mutations apparently do 
not affect vesicle release, MVB formation 
is somehow related to the formation of 
extracellular vesicles in yeast.

Post-Golgi secretory vesicles usually 
fuse with the plasma membrane to release 

Figure 1. Cryptococcus neoformans, a yeast pathogen, produce vesicle-like structures (arrows) that 
apparently bud from the plasma membrane to be deposited at the cell wall, as evidenced from 
transmission electron microscopy. Gold labeling represents reactivity of fungal glucosylceramide 
with human antibodies. Scale bar, 0.1 µm. Asterisk denotes the cell wall. For experimental details, 
see Rodrigues and colleagues.26 Modified from Barreto-Bergter et al.25 courtesy of Dr. Kildare 
Miranda.
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release has been associated to protein and 
polysaccharide secretion,12-14,22,32 surface 
architecture,31 virulence,10,12,13 pigmenta-
tion33 and modulation of macrophage 
function.15 Despite their apparent multiple 
functions in yeast, the cellular components 
controlling their biogenesis and release 
remain elusive. We emphasize the sup-
position that the methods currently used 
for preparation of extracellular fractions 
containing vesicles may co-isolate vesicu-
lar compartments of different cellular ori-
gins, which limit the application of studies 
based on the generation of punctual muta-
tions. Post-Golgi components required for 
conventional secretion, proteins involved 
in MVB formation, GRASP and even 
autophagy-related events may be involved 
in the formation of extracellular vesicles. 
Although much progress has been made in 
the last three years, the route to understand 
how fungal extracellular vesicles are formed 
still seems long and laborious.
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