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Diseases caused by fungi are increasingly impacting the health

of the human population and now account for a large fraction of

infectious disease complications in individuals with impaired

immunity or breached tissue defenses. Antifungal therapy is

often of limited effectiveness in these patients, resulting into

treatment failures, chronic infections and unacceptable rates of

mortality, morbidity and their associated costs. Consequently

there is a real medical need for new treatments and preventive

measures to combat fungal diseases and, toward this goal,

safe and efficacious vaccines would constitute major progress.

After decades of complacency and neglect of this critically

important field of research, remarkable progress has been

made in recent years. A number of highly immunogenic and

protective vaccine formulations in preclinical setting have been

developed, and at least two have undergone Phase 1 clinical

trials as preventive and/or therapeutic tools against

candidiasis.
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Medical need and vaccine drivers
After the first decade of the third millennium, or more

than two centuries since the first safe and efficacious

vaccine (smallpox vaccine) was delivered to humankind,

and now approaching half a century since the declaration

of smallpox eradication, and after more than a dozen

severe lethal bacterial and viral diseases have been kept

at bay by vaccination, there is still no vaccine against any

fungal disease, including those endemically affecting

people in vast areas of the earth. Major obstacles that

have hindered, and still continue to have an impact on,

the development of fungal vaccines have been discussed

elsewhere by ourselves and others [1,2,3�,4,5], and these
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include the lack of good quality vaccine formulations and

the absence of mass market appeal, with the latter being

complicated by the high cost of clinical investigations.

However, this situation is rapidly changing by increasing

medical need and the attention of both investigators and

industry representatives has begun to focus on the need

for vaccine against major fungal pathogens. Consequently

we are now on the threshold of clinical development for

some vaccines against fungal pathogens.

Major drivers of the rather sharp change in perspective

regarding antifungal vaccines are considered in Box 1. It is

difficult to weight the importance of any single factor for

the shift in emphasis but it is likely that a combination of

biotechnological progress leading to the generation of

well-characterized, highly immunogenic, stable and stan-

dardized fungal antigens on one hand and the recognition

of our current inability to treat most fungal diseases

successfully and at acceptable cost, on the other hand,

are the major determinants of the recent progress. The

vaccine industry now sees fungal vaccines very differently

than in the past, both as a consequence of medical need

and as a result of the development of novel ideas by some

vaccine pioneers about the role of vaccines in the popu-

lation, realizing the goals of protecting most vulnerable

subjects because of age or underlying disease, and gen-

erating vaccines not only to prevent lethal diseases but

also to improve quality of life [6,7].

In this latter context, a relevant example is provided by

the experience with chronic and recurrent vulvovaginal

candidiasis (RVVC) [8]. This is certainly not a life-threa-

tening illness but can have a devastating effect on the

quality of life of millions of women worldwide. Although

exact numbers for the incidence and prevalence of this

disease are difficult to obtain because RVVC is not a

reportable disease, it is generally thought that approxi-

mately two thirds of all women in fertile age have experi-

enced at least one acute attack of vaginal candidiasis in

their lifetime and that 50% have multiple distinct epi-

sodes. Importantly, roughly 4–5% of these women

develop RVVC (meaning >3 episodes per year of vaginal

inflammation). RVVC is very difficult to control and may

never be definitely cured before women enter the meno-

pause. Thus, in regards to RVVC, we are dealing with

millions of cases per year, as also witnessed by the huge

number of medications sold annually worldwide. In

recent internet-based self-assessment studies, the rate

of RVVC in countries such as US, UK, France, Italy

and Spain was reported to be as high as 9% (Foxmann,

personal communication, manuscript submitted). Can-
dida albicans is the cause of >90% RVVC cases and
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Box 1 Major drivers of current interest in promoting research

on, and developing, fungal vaccines

Availability of safe, highly immunogenic and protective fungal

antigens in several, independent investigations in animal models.

Emergence of rather strong, unmet medical needs concerning both

the number of subjects affected by fungal infections and the

numerous categories of underlying medical conditions associated

with increased susceptibility to fungal disease. Morbidity and

mortality particularly high (up to nearly 50% of attributed mortality) in

some settings of fungal infections, particularly invasive aspergillosis

and candidemia, despite optimal available chemotherapy.

Rising confidence for the ability of vaccine preparations to elicit

protective immunity unbiased by pre-existing fungal immunity arising

from natural infection or commensalism (particularly for candidiasis).

Market potential for some ‘therapeutic’ vaccines such as those

against recurrent vulvovaginal candidiasis: emergence of the con-

cept of vaccine-to-improve-quality of life.

Public health and industry interest in widening the spectrum of

preventive and therapeutic vaccines to cover even non-lethal fungal

diseases, assuring protection in vulnerable, aged people with

underlying medical conditions:

Scientific progress in an area where novel immunological paradigms

can emerge: immune responses in commensalism/frequent expo-

sure/opportunism by eukaryotic infectious agents (see the case for

Th17 cells and antibodies).
women with this chronic inflammatory syndrome has

become a main target population for a therapeutic anti-

candida vaccine (see below).

In summary, it now appears that a sort of virtuous circle has

been generated as a result of a confluence of disparate

events that has created an environment propitious for

vaccine development. Factors that have contributed to

this situation include creative competition among various

research groups from different disciplines including indus-

trial partners, some of which have now given high priority

to fungal vaccine development. This is demonstrated by

the number of novel fungal components for vaccine de-

velopment, immune mechanisms and preclinical studies,

making the pair with the rather high numbers of patents

dealing with Candida vaccines [9]. Of course, judgment is

needed to select the most promising vaccines for clinical

investigations from a plethora of potential choices, some of

which are made by exceedingly complex, uncharacterized

antigenic mixtures, while others have been tested in unre-

liable animal models with doubtful predictive efficacy and

still others with no evidence for induction of adaptive

immunity and memory responses, and/or mechanisms

underlying vaccine efficacy. If we also add to this complex-

ity the issues of adjuvancy and good quality manufacturing

(see below), very few of the candidate vaccines meet all

basic requisites for clinical trials.

Concerning the vast array of fungal vaccines candidates

and their immunological basis several reviews have been

recently published and the readers are invited to consult
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those sources for more detailed information [1,2,3�].
Particularly, this invitation should be met by those who

wish to get an insight into the progress of vaccines against

North American and South American endemic mycoses

whose commercial realization is proving to be remarkably

difficult for logistic and marketing aspects despite a

record of high quality biochemical and immunological

investigations in these fields [3�]. Instead, we wish to

highlight here recent progress in some vaccines against

opportunistic fungal infections and discuss both some

changes in perspective for the target subjects of these

vaccines and the underlying immunological paradigms

which, in some cases, raise important immunological

issues. Particular emphasis will be given to those vaccines

which are known to be under clinical trial.

Who can or must be vaccinated?
With the possible exception of vaccines against endemic

fungal diseases, such as coccidioidomycosis, paracocci-

dioidomycosis and histoplasmosis, as well as vaccines

against chronic, RVVC (see below), fungal vaccines

should primarily be conceived as tools to prevent or help

to cure fungal diseases in immunocompromised or other-

wise debilitated hosts, since fungal diseases have an

extraordinary high mortality and morbidity in this group

and consequently there a real medical need for a fungal

vaccine. However, there are severe obstacles to the

implementation of such a strategy. Many immunocom-

promised subjects who are prone to develop aggressive

fungal infections such as aspergillosis and deep-seated

candidiasis are those with hematologic disorders or can-

cer, which need to be treated with transplant and/or

immunosuppressive, anticancer therapy soon after diag-

nosis. Consequently, the vaccine development for this

group poses a problem of leaving too narrow a window to

consider vaccination and/or initiate an appropriate sche-

dule of vaccination. In addition, despite several claims

that residual, effective immune responses could effec-

tively deal with the pathogen even after deletion or loss of

major groups of antifungal defensive cells such as pha-

gocytes and CD4T helper cells [1,3�,10,11] it remains

uncertain whether persistent protection could be

obtained in these subjects because of their underlying

immune defect. Few studies have addressed whether

adoptive vaccination by transfer of dendritic cells in these

subjects is a realistic option [12].

On the other hand, accurate epidemiologic research has

identified a large set of individuals who are at risk of

invasive fungal infection, and particularly candidemia and

aspergillosis, who cannot be defined as immunodepressed

and who may be able to mount appropriate, persistently

protective immunity by canonical vaccination

approaches. Although this distinction must be assumed

with some caution since, for instance, patients undergoing

deep surgery will certainly experience a transient phase of

immune impairment [13], there are doubtless several
www.sciencedirect.com
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Table 1

Major subunit vaccine candidates against opportunistic fungal infections.

Disease Vaccine Nature of protective immunity References

Candidiasis b-mannan-peptide or protein conjugates Opsonic, antibody-mediated [15��,19]

HyR1 Antibodies neutralizing Candida evasion from neutrophil killing [20]

Recombinant Als 3* proteins Th17–Th1 activity

(Abs as surrogate markers or predictors of protection)

[21,43,49]

Recombinant Sap2* proteins Antibodies neutralizing Sap activity (enzyme, adhesion

and/or others)

[16�]

Laminarin-CRM197 conjugate Anti-beta-glucan Abs with direct anti-Candida activity [33�,44,45]

Cryptococcosis Laminarin-CRM197 conjugate Antibodies affecting capsule size and function [34]

GXM conjugate Opsonic anti-capsular Antibodies [17]

Peptide mimotopes [17,23]

Aspergillosis Laminarin-CRM197 conjugate Unknown: possible direct antifungal activity of antibodies [44]

AspF antigens CD4 T cells

(antibodies surrogate or predictors of protection)

[39]

Cell wall glucanase Crf1 CD4 Th1 cells [47]

The asterisk denotes the two vaccines currently under clinical trial.
pathologies and/or medical intervention which place indi-

viduals with no obvious immune deficit at risk of life-

threatening fungal infection. Dominant among these

categories are subjects with a breach in their cutaneous

and mucosal defenses, particularly intestinal, and bearing

permanent central venous catheters, or simply having a

long hospital stay, particularly in the intensive care set-

ting. Among subjects in this category, candidemia has

become a real public health problem [14]. Hence vaccines

against opportunistic fungi will probably be generated

and primarily used in one or more of these subjects

categories.

Issues about antigenic composition and
formulation: the critical role of adjuvants
As for all other vaccines, the proposed fungal vaccines

cover a wide range of different composition ranging from

whole-inactivated fungal cells and virulence-attenuated

mutant organism to subunit vaccines on the basis of

single, recombinant protein or peptide fragment or gly-

coconjugates [15��,16�,17,18–27]. Whole inactivated

organisms have the disadvantage of a having a complex

chemical composition that poses serious problems with

regards standardization and safety. Inactivated cells also

elicit weaker immune responses than live vaccines. In

contrast, virulence-attenuated mutants are usually one of

the best immunogens to achieve specific protection but

have the drawback of limited use for immunosuppressed

or otherwise debilitated subject who represent theoreti-

cally a vast category among those who could benefit of a

fungal vaccine, since even attenuated variants can some-

time cause disease in individuals with impaired immu-

nity. On the other hand, subunit vaccines (Table 1),

which may be the best choice with regards to manufac-

turing, standardization, and safety, hence easier access to

clinical trial, are poorly immunogenic and usually require

to be administered with an adjuvant to induce a long-

lasting protective immunity. While this is no problem in
www.sciencedirect.com 
experimental animal models, where the classical Freund

adjuvant and companions have largely and profitably

employed, there is a scarcity of good adjuvants suitable

for use in clinical practice. Furthermore, there is little

experience with fungal vaccines in humans, and some

failure of aluminum salts [18], which are the landmark of

human-compatible adjuvants. This has led to the use of

oil-in-water mixtures, for instance squalene-based MF59,

which have been advocated to broaden the nature of the

epitopes recognized including those of low antigenicity,

by mechanisms which are still under intense study

[18,28]. An alternative to these adjuvants is the use of

liposomes, virosomes, inert nanoparticles, PAMP-derived

components and other bioengineered preparations

[29,30]. One of the two anticandidal vaccines in clinical

trial (see below) uses a virosomal platform as adjuvant/

carrier whereby the antigen component of the vaccine is

stably linked to influenza virus-derived particles

embedded in a liposomal formulation. The virosomal

formulation conferred high immunogenicity to a recom-

binant protein with intrinsically low immunogenicity

[31].

Immunological basis of fungal vaccines
One of the most interesting, and intriguing aspect of

fungal vaccines lies on the apparent existence of dual

immunological mechanisms in achieving protection. As

shown in Table 1, the main mechanisms which have been

advocated are a Th1-based and/or Th17-based response,

or antibody-mediated immunity. Although the different

mechanisms can indeed cooperate for the final protective

outcome, the distinction remains substantial both for

vaccine formulation and for establishing correlates/surro-

gates of protection in clinical trials. In particular, the T

cell-based mechanisms mediate protection indirectly,

that is, promoting an inflammatory response with recruit-

ment of soluble (antimicrobial peptides, cytokines, che-

mokines) and cellular (macrophages, neutrophils)
Current Opinion in Microbiology 2012, 15:427–433
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Figure 1

PAMP and/or antigen stimulation of DC,
macrophage PRR (a)

Dendritic cell

Cytokines ( c)

IL-17, IL-22 and IL-21 (d)

Th17

Activation-recruitment

Of antifungal humoral and

Cellular effectors (e)

Intracellular signaling (b)

C. albicans
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Highlights on Th17 cells as a major cellular platform for antifungal defense

and vaccination. (a) PRR, pattern recognition receptors such as Toll-like

receptors, Dectin-1, mannose receptors and others. They can differ

between DC and macrophages and be differently involved in recognition

of different fungal PAMP (Beta-glucan, mannoproteins, GXM, etc.)

expressed on fungal surface. (b) and (c) Various mechanisms, often

interrelated and involving transcription factors, inflammation activation

and cytokines such as type 1-IFN. IL-10, IL-12, IL-23 and others

depending on signaling cascade. IL-23 is particularly critical for Th17

expansion. (d) IL-17 isoforms IL-17 A and IL-17F. (e) Antifungal defensins,

chemokines, inflammatory cytokines, PMN (neutrophils).
effectors which ultimately are responsible for the elim-

ination or control of the invading fungal cells at the site of

infection [32�]. In contrast, antibodies can mediate pro-

tection not only by the classical opsonophagocytosis and

complement activation, which ultimately also rely on

phagocyte numbers and activation state, but also by direct

neutralization of factors such as adhesins or enzymes

which are a critical step for infection, or by inhibiting

fungal escape from host immunity, or fungal growth or

even directly killing the fungus [15��,33�,34]. Recently,

specific antibodies to Cryptococcus neoformans were shown

to directly modulate fungal metabolism opening yet

another mechanism by which humoral immunity can

potentially alter the outcome of fungal infection [35�].
These mechanisms could prove of particular importance

in vaccines aimed at protecting prospective immunocom-

promised host with defective cellular effectors.

Th17 cells, directly and/or by promotion of, or collabor-

ating with, Th1 responses (Figure 1), have been advo-

cated to be responsible for protection mediated by some

vaccines against candidiasis (the Als3 vaccine) but mostly

against aspergillosis, and endemic mycoses ([36��,37–39];

Table 1). In addition, this mechanism has a corresponding

counterpart in the natural history of fungal infections

where DNA polymorphisms affecting receptors and cyto-

kines critical for Th1 and Th17 responses seem to pre-

dispose to various forms of mucosal candidiasis and

invasive aspergillosis (reviewed in [32�]). A vaccine on

the basis of eliciting an exclusive Th1/Th17 response as

effector cells would be a novelty in the field of human

vaccines, since almost all of existing vaccines mediate

protection through neutralizing antibodies. A potential

drawback in this kind of immunoprotective mechanism is

the requirement for an intact capacity to recruit and

activate phagocytes, which can be either deficient in

immunocompromized host setting or can be themselves

the cause of the inflammatory disease as for chronic

recurrent vaginal candidiasis and other mucosal infections

[8,40] Overall, the role of Th17, their interaction with the

other CD4 cell subsets, and antibodies in fungal vaccines

remain a subject of intense research interest. With regards

to C. albicans, we note the report that specific T lympho-

cytes produce both IFN-g and IL-17, that is, the cytokine

signatures of Th1 and Th17 cells respectively [41]. Of

interest is also that in some vaccines relying on Th17

elicitation for protection, specific antibodies may none-

theless predict the achievement of the protective state

[36��,42,43].

More in line with vaccine historical achievements are

those on the basis of antibody neutralizing one or more of

critical factors for fungal infection, yet this field has long

been neglected by fungal vaccinologists because of the

apparent lack of evidence of antibody involvement in the

natural history of fungal infections, with the possible

exception of anti-capsular polysaccharide antibodies in
Current Opinion in Microbiology 2012, 15:427–433 
cryptococcal vaccines. With the noted exception of the

vaccines against endemic mycoses, there is now undis-

putable evidence that the majority of the vaccines pro-

posed against infection by major fungal pathogens such as
www.sciencedirect.com
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Box 2 Major differences between the two vaccine antigens of C. albicans under clinical trial

Als 3 Sap 2

A cell surface, GPI protein member of Als adhesin

family without known enzymatic activity: interacts

with various members of host integrin family

A major member of secreted aspartic proteinase family

of C. albicans with direct or indirect adhesin activity.

May interact and hydrolyze various host immunologically

relevant proteins such as complement antibodies and

epithelial structural proteins such as E-cadherin

Involved in biofilm formation No apparent role in biofilm (other members of Sap family may be involved)

Modulates iron acquisition by hyphae A classical metabolic role as proteinase of C. albicans, both in yeast and hyphae

Candida-colonized subjects have both CMI and Ab

responses against Als 3

Low or no levels of antibodies and CMI responses

in Candida-colonized subjects, likely because of Sap2

low immunogenicity in its natural form

Vaccine induces protection through elicitation of Th1

and Th17 cells, then the cohort of antifungal humoral

and cellular factors acting locally and promoting

inflammation

Vaccine induces protection through elicitation

of neutralizing antibody at vaginal level

Vaccine target: candidiasis systemic and mucosal Vaccine target: recurrent vulvovaginal candidiasis
C. albicans and Cryptococcus neoformans owe their exper-

imental protection to antibodies as formally shown by

passive serum transfer and use of monoclonal antibodies

(Table 1). Interestingly enough, both C. albicans and

Cryptococcus neoformans are the pathogenic fungi in which

there is also more compelling evidence for the existence

of true aggressive factors such as capsule, adhesins and

virulence enzymes to quote just a few, which mediate a

degree of fungal virulence and contribute to the disease.

Antibodies neutralizing these virulence factors are

obvious mediators of vaccine-induced protection, particu-

larly those antibodies which are not major components of

fungus-pre-existing immunity in humans. In line with

this reasoning, a glycoconjugate ‘universal’ vaccine elicit-

ing antibodies to beta 1–3 glucan has been shown to

confer significant protection experimental models of

aspergillosis, candidiasis and cryptococcosis [33�,44,45]

New technological improvements in the induction of

adaptive immunity by glycoconjugate vaccines could

further enhance the wide-spectrum protective efficacy

of this and other antifungal glycoconjugates [46]. A recent

report confirms the possibility of using Candida and

Aspergillus cross-reactive antigens for vaccine protection

[47].

Vaccines in clinical trial
Two fungal vaccines are currently in Phase 1 clinical

trial, both designed to protect against Candida infec-

tions, particularly chronic recurrent candidal vaginitis

(Box 2). A first vaccine is on the basis of a N-terminus

portion of a recombinant Als3 with alum as adjuvant

(Nova Digm, USA). This vaccine has proven protective

in various experimental models of Candida infections,

both mucosal and systemic. In mice, protection appears

to be mediated by the cooperative activity of Th1 and

Th17 cells, and be independent on antibodies and B

cells. Antibodies are indeed elicited by vaccination and

have been proposed as surrogate markers of effective
www.sciencedirect.com 
vaccination or even ‘predictors’ of protective state [42].

In this regards susceptibility to Cryptococcus neoformans
has been associated with deficits in IgM memory B cells

[48]. For C. albicans, normal human subjects are primed

against Als proteins, and have both cell-mediated and

anti-Als3 serum antibodies [49]. A report on satisfactory

safety and immunogenicity profile from Phase 1 clinical

trial of the Als3 vaccine (single dose) has been posted on

the web (www.novadigm.net). In parallel studies, Als3

vaccine has been claimed to exert protection also against

experimental infection by Staphylococcus aureus through

a mechanism that may involve antigenic mimicry

[38,43].

A second vaccine that is progressing in Phase 1 clinical

trial is a virosomal formulation of a N-terminus truncated,

recombinant secretory aspartyl proteinase (Sap2) of C.
albicans (PEV7 by Pevion Biotech, Switzerland). On the

basis of strong evidence for the critical role of this enzyme

and homologous Sap in human and experimental candidal

vaginitis [16�,50], this vaccine is designed primarily for

therapeutic use against RVVC. The vaccine appears to

confer protection by Sap-neutralizing antibodies which

are absent or at very low levels in serum or vaginal fluid of

healthy Candida colonized women. Initial safety as well as

immunogenicity data of PEV7 in women is strongly

encouraging (www.pevion.com). Interestingly, data

suggesting for a protective role of Th17 cells in a murine

model of candidal vaginitis have recently been published

[51].

Conclusions
Years ago, David Stevens called to the arms to enlist the

immune system in the fight against fungal infections [52].

Vaccines represent a gold standard among the tools derived

from the various arms of the immune system, hence their

generation and use is the best way to respond to that call.

Obstacles remain for the commercial development of
Current Opinion in Microbiology 2012, 15:427–433
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vaccines against medically important fungi and these are

largely financial, but at least for some infections in some

categories of patients a vaccine will probably be available in

the next future. This will finally fill the gap noticed in the

field of anti-infectious vaccines and will represent a funda-

mental public health achievement in a medical area still

affected by substantial, morbidity, mortality and high cost

of cure.
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