
Transcriptional regulation in the nucleus is the culmi-
nation of the actions of a diverse range of factors, such 
as transcription factors, chromatin remodellers, polymer-
ases, helicases, topoisomerases, kinases, chaperones, 
proteasomes, acetyltransferases, deacetylases and 
methyltransferases. Determining how these molecules 
work in concert in the eukaryotic nucleus to regulate 
genes remains a central challenge in molecular biology. 
Dynamics lie at the heart of this mystery. Megadalton 
complexes assemble and disassemble on genes within 
seconds1,2; nucleosome turnover ranges from minutes 
to hours3; and gene activity demonstrates complex tem-
poral patterns such as oscillation and transcriptional 
bursting4,5. Exciting new experimental advances have 
enabled the study of dynamic transcriptional regulation 
at the single-molecule6 and genome-wide7 levels, thus 
enhancing our understanding of transcriptional regula-
tion in vivo. These approaches also necessitate new mod-
els for describing gene expression. In this Review, we 
discuss recent in vivo results and the quantitative models 
that are motivated by those results.

Chromatin immunoprecipitation (ChIP) provides 
genome-wide occupancy profiles for chromatin- 
interacting factors at near base-pair resolution in popu-
lations of cells8,9. Using this approach on a genome-wide 
level has generated comprehensive maps of regulation on 
a gene‑by‑gene basis7,8,10. This population approach has 

been complemented by single-cell imaging techniques. 
Almost all factors that have been studied by live-cell 
microscopy exhibit dwell times on chromatin on the 
order of seconds11, and single-cell studies demonstrate 
a great variability in gene expression among cells in a 
population, owing in part to the stochastic nature of 
transcription12. Despite these tremendous advances in 
understanding the behaviour of individual factors, both 
methods fall short of capturing the sequence of events 
that is required to activate or repress a gene in vivo. 
Ideally, the occupancy of many factors that are coinci-
dent on a single stretch of DNA would be measured to 
obtain a sense of the complexes and intermediates that 
assemble in vivo. However, this experimental challenge is 
a daunting one. Current re‑ChIP (also known as sequen-
tial ChIP) experiments usually look at two factors4,13 but 
it would be necessary to look at an order of magnitude 
more factors to begin to capture the combinatorial com-
plexity of transcriptional regulation in metazoans4,14–16.

The gulf between actual mechanisms of transcrip-
tional regulation and experimental capabilities could be 
bridged by using quantitative models of transcription. 
Decades of biochemical, structural and genetic data have 
spawned multiple models of transcriptional regulation, 
several of which we discuss below (FIG. 1). Even though 
these views are not mutually exclusive and boundaries 
between them are not clear, they reflect fundamental 
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Abstract | Transcriptional regulation is achieved through combinatorial interactions 
between regulatory elements in the human genome and a vast range of factors that 
modulate the recruitment and activity of RNA polymerase. Experimental approaches for 
studying transcription in vivo now extend from single-molecule techniques to 
genome-wide measurements. Parallel to these developments is the need for testable 
quantitative and predictive models for understanding gene regulation. These conceptual 
models must also provide insight into the dynamics of transcription and the variability  
that is observed at the single-cell level. In this Review, we discuss recent results on 
transcriptional regulation and also the models those results engender. We show how a 
non-equilibrium description informs our view of transcription by explicitly considering 
time- and energy-dependence at the molecular level.
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differences regarding the mechanisms of the underlying 
molecular processes. Currently, most quantitative theo-
retical models describe transcriptional regulation as an 
equilibrium thermodynamic phenomenon — an assump-
tion that allows model building without explicitly consid-
ering the dynamics. Here we explain how this description 
is fundamentally inconsistent with the canonical view 

of gene regulation based on a sequential, ordered 
recruitment of factors, which is an example of a non-
equilibrium model. In the context of a non-equilibrium  
model, the transcriptional dynamics can exhibit a form 
of molecular memory so that the future behaviour of 
the system depends on its history. We will outline this 
gap between the molecular biologist’s canonical view of 

Figure 1 | Points of view on transcriptional regulation.  Three schemes 
are shown that emphasize different aspects of transcription and gene 
regulation. Although these descriptions are not mutually exclusive, each 
scheme results in a particular bias regarding the temporal behaviour of 
single genes. A   |  The assembly–function–dissociation model. 
Experimental approaches based mostly on in vitro reconstitution or bulk, 
population-level assays aim to determine the molecular players that are 
involved at different stages in the transcription process. These methods 
clearly show that transcriptional activation is the result of a series of 
events that occur in a certain sequence. However, this scheme tends to 
describe the recruitment of complexes as a rather static and 
deterministic process. The example shown is of transcription initiation: 
Aa shows the uncovering of binding sites for the core machinery and Ab 
shows ordered assembly of the pre-initiation complex (PIC). B | The 
probabilistic model, showing the same stages of transcription as in panel 
A. Experiments based primarily on fluorescence microscopy can address 
questions relating to the kinetic aspects of transcription over various 
timescales. Such experiments have revealed that interaction times vary 
substantially but are generally short for most regulatory molecules. They 

show various slow temporal patterns in the transcriptional responses, 
with a substantial level of cell‑to‑cell variability. Coloured shapes 
represent factors that interact with chromatin (represented by a stretch 
of nucleosomal DNA). Curved arrows represent short-lived associations; 
arrows of different weights represent reversible reactions in which the 
forward and reverse reactions have different probabilities. 
C | Quantitative models of transcriptional regulation. Computational 
methods have been developed to quantitatively relate the concentration 
of regulators to average transcriptional activity, based on protein–DNA 
and protein–protein interactions. These models generally do not 
explicitly consider the intrinsic dynamics of the processes involved. In the 
example shown, the interaction energies between a factor, a binding site 
and a nucleosome (left) are used to compute the probabilities of different 
configurations of the regulatory region of the gene (centre). Given the 
different rates of transcription initiation that each configuration would 
lead to (represented by different sized polymerases), this approach can 
relate the concentration of the regulator to the transcriptional output of 
the gene (shown in the graph on the right). IID, transcription factor IID; 
Pol II, RNA polymerase II.
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Chromatin remodellers
Along with chromatin 
modifiers, these are complexes 
and enzymes that affect the 
status of chromatin, through 
conformational changes (such 
as nucleosome displacement 
or eviction, or histone 
replacement) or by depositing 
or removing covalent marks on 
histone tails. These processes 
are accompanied by the 
hydrolysis of coenzymes, 
releasing chemical energy.

Chromatin 
immunoprecipitation
(ChIP). A method to assess the 
occupancy at a given genomic 
locus by a particular factor. It is 
carried out by amplifying DNA 
fragments that have been 
crosslinked to the factor of 
interest and pulled down using 
an antibody.

Re‑ChIP
A modification of the 
chromatin immunoprecipita‑
tion (ChIP) method. By 
successively using several 
antibodies, it allows an 
assessment of the 
co‑occupancy of a locus by 
multiple factors.

Equilibrium
For a chemical system to be at 
equilibrium, every reaction 
must occur in both directions 
with equal probability (or rate). 
Hence, a system can reach a 
steady state without ever being 
at equilibrium.

Steady state
Refers to a system that does 
not evolve over time. This 
concept may apply to various 
descriptions such as a set of 
concentrations of molecular 
species or the probability 
distribution of a set of features 
among a population of cells 
(for example, nucleosome 
positions on a specific 
promoter).

Fluorescence recovery after 
photobleaching
(FRAP). An experimental 
microscopy method to assess 
the mobility of molecules in 
living cells. In FRAP, the rate at 
which fluorescently labelled 
molecules repopulate a region 
of the cell that has been 
photobleached reflects both 
their diffusion and binding to 
chromatin.

transcription and the quantitative approaches that are 
often used to describe it. We argue for a non-equilibrium 
view of transcriptional regulation that is informed and 
constrained by single-cell observations. With the abil-
ity to observe single transcription factors17 and single 
transcribing genes18 in living cells, new experimental and 
modelling possibilities are emerging for understanding 
transcription dynamics in vivo.

The assembly–function–dissociation model
Data from in vitro reconstitution and population assays 
are often interpreted in terms of sequential molecular 
events. In a typical example of inducible RNA polymer-
ase II (Pol II) transcriptional activation (FIG. 1A), an acti-
vator molecule first binds to a recognition site upstream 
of the transcription start site (TSS) and then recruits 
co‑activators and chromatin remodelling machinery that 
eventually leads to nucleosome displacement at the core 
promoter, uncovering binding sites for the core machin-
ery19–21. Thereafter, the pre-initiation complex (PIC) 
can assemble in an ordered manner13,22–24. Following 
several steps, including covalent modification of the 
Pol II carboxy-terminal domain (CTD), transcription  
can commence25.

The essential idea to retain from these experimental 
results is that the events involved in transcriptional regu-
lation seem to be intrinsically ordered (FIG. 1A). Although 
several alternative pathways may exist to reach the same 
outcome26,27, it is clear that certain molecules cannot be 
recruited before certain steps have taken place. In this 
view, a given complex is recruited at the relevant stage, 
carries out its function (thus allowing the next step to 
occur) and eventually dissociates. Hence, even though 
kinetics per se are generally not of paramount concern in 
this scheme, the arrow of time occupies a central place. 
Moreover, a rate-limiting step may be invoked as the 
slowest molecular step in the process, which ultimately 
limits the overall progression and may therefore regulate 
the rate of transcription19. These notions of sequential 
recruitment and rate-limiting steps reflect a form of 
implicit kinetics, although it is usually considered in a 
steady-state, population-averaged context. These implicit 
kinetics will become explicit when we consider the case 
of stochastic transcriptional dynamics of single genes.

To address this notion of sequential recruitment, 
numerous population-level experiments may have 
an explicit temporal dimension. Typically, reverse- 
transcription PCR (RT‑PCR) or ChIP is carried out 
over time after the induction of a gene to follow its tran-
scriptional activity and promoter occupancy by various 
factors within a population of cells or chromatin tem-
plates4,14–16,28–32 (FIG. 2A). For example, after the addition 
of oestrogen there is sequential recruitment to the trefoil 
factor 1 (TFF1) promoter of oestrogen receptor-α (ERα) 
and other factors including histone methyltransferases, 
histone acetyltransferases, then general transcription 
factors, and finally Pol II4,14,15. This recruitment process 
repeats for multiple cycles. Thus, ChIP-seq for ERα and 
other transcription factors that are associated with oes-
trogen-regulated transcription33–37 has helped to define 
the concept of the oestrogen receptor ‘enhanceosome’, 

which is composed of ERα, GATA3, and forkhead box 
protein A1 (FOXA1)38. Although there is some debate 
about which factor arrives first (the so‑called ‘pioneering 
factor’)37–40, the essential underpinning of this descrip-
tion is that somehow the steroid-receptor ERα and 
the sequence-specific activators GATA3 and FOXA1 
assemble sequentially on DNA to activate or repress 
oestrogen-regulated genes.

The corollary to this interpretation of population 
assays is that the requirement for multiple factors must 
reflect stable and long-lasting binding of molecules as 
part of a protein–DNA complex41–44. Indeed, it is often 
believed that complexes remain bound as long as they 
are observed on DNA in a ChIP assay and dissociate only 
when no longer needed. In this general view, the recruit-
ment of different molecular partners progressively stabi-
lizes the structure and facilitates the recruitment of other 
factors in a static and well-ordered manner.

Experiments in living cells complicate this view. For 
example, observations of ERα binding to DNA in single 
cells using a fluorescence microscopy assay showed that 
ERα is only bound to DNA on average for a few sec-
onds45, a period that is vastly shorter than the measured 
persistence of the ChIP signal. These data suggest that 
the peaks observed in ChIP experiments are static snap-
shots of dynamic processes that may only be occurring 
in a subset of cells. Moreover, average occupancy of a 
binding site at a promoter by a transcription factor does 
not correlate nearly as well with expression levels as the 
dwell time of that factor46. These experiments and other 
live-cell measurements have motivated an alternative 
model: the ‘probabilistic model’.

The probabilistic model
Live-cell fluorescence microscopy probes the kinetic 
aspects of transcription and transcriptional regulation 
across a broad range of timescales that are much shorter 
than those probed in most population studies (FIG. 1B). 
This method can resolve the diffusion and binding 
of transcription factors in the nucleus, the stochastic 
assembly of complexes at promoters and enhancers and 
the time course of the transcriptional output (the lat-
ter of which is often imaged on gene arrays (FIG. 2B))47–50.  
These experiments also motivate a probabilistic 
model: one that is based on the stochastic interactions 
between transcription factors and DNA and that can 
account for the timing of the downstream transcrip-
tional output resulting from those interactions. Time 
is a central notion in this model and is approached in 
a much more explicit and quantitative way than in the 
assembly–function–dissociation model.

Experiments such as fluorescence recovery after  
photobleaching (FRAP) and fluorescence correlation  
spectroscopy (FCS) have shown that many of the molecules  
that are involved in transcription have short residence 
times on DNA relative to the timescale over which tran-
scription takes place. Although a consensus across the 
various methods has not completely been reached51,52,  
the residence times of molecules on their target sites range 
from seconds to minutes: sequence-specific transcrip-
tion factors (for example, MYC, p53 and glucocorticoid  
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Figure 2 | Experimental techniques to study transcriptional 
kinetics.  The dynamics of transcription can be probed using various 
techniques. A | Promoter occupancy and transcriptional output can be 
followed over time using bulk assays on either living cells (Aa) or 
reconstituted in vitro systems (Ab), thus yielding a population-level view 
of transcription dynamics. An example workflow for this type of 
experiment is shown. B | Live-cell imaging of gene arrays (gene copies are 
shown in grey) provides a single-cell picture, but this method still involves 
taking average readings across many copies of the gene of interest. 
Nascent RNAs visualized using MS2 and/or PP7 RNA labelling are shown 
in green. C | Single-gene dynamics can be probed either by following the 
fluctuations of fluorescence or luciferase activity of a reporter gene 
product (Ca) or directly at the transcription site, by monitoring the 

amount of nascent RNAs labelled with MS2 or PP7 fluorescent 
proteins(Cb). The resulting time traces can be interpreted using 
fluctuation correlation analysis62 or hidden Markov methods63 to reveal 
the kinetic scheme that the gene is following (for example, stochastic 
bursting or constitutive initiation). Single-gene methods also allow the 
estimation of parameters such as the initiation rate, the elongation  
time or (as shown in Cc) the distributions of time the gene remains in an 
active or inactive state. Data shown in C are simulated on the basis of 
schemes and parameters that are consistent with recent single-gene 
studies18,62,63. ChIP, chromatin immunoprecipitation; ChIP–seq, ChIP 
followed by high-throughput sequencing; GRO-seq, genomic nuclear 
run‑on followed by high-throughput sequencing; qRT-PCR, quantitative 
reverse-transcription PCR; TFs, transcription factors.

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 14 | AUGUST 2013 | 575

© 2013 Macmillan Publishers Limited. All rights reserved



Fluorescence correlation 
spectroscopy
(FCS). An experimental 
microscopy method to assess 
the mobility of molecules in 
living cells. In FCS, those 
properties are derived from  
the temporal fluctuations of 
fluorescence due to molecules 
entering and leaving a small 
optically defined volume of  
the cell.

MS2 and/or PP7 RNA 
labelling
A microscopy technique for 
labelling, in live cells, the 
transcripts from an artificial 
gene construct. Many 
molecules of fluorescent 
proteins (MS2 or PP7) bind 
each RNA on a specific 
cassette, thus allowing the 
monitoring of the number  
of nascent RNAs being 
transcribed at the gene  
locus over time.

Genomic nuclear run‑on 
followed by high-throughput 
sequencing
(GRO-seq). This approach uses 
nuclear run‑on methodology  
to map transcriptionally 
engaged polymerases on a 
genome-wide level. This 
approach constitutes a direct 
measure of transcriptional 
activity.

receptor (GR)) are among the most dynamic, and  
the core histones (H2A, H2B, H3 and H4) are among the  
most stable11. Biochemical techniques have also been 
used to demonstrate turnover. For example, competi-
tion ChIP in yeast to study Rap1 and Gal4 indicates an 
average dwell time of ~60 minutes46,53, and metabolic  
labelling of histones indicates a similar turnover rate3,54.

Remarkably, the turnover kinetics of a given complex 
can vary depending on its engagement in the transcription 
process and can be subject to substantial modulations. For 
example, in specific conditions (such as a cell cycle phase, 
or during a response to stress or signalling), certain mole-
cules can become more or less mobile, and therefore more 
or less likely to influence the probability of recruitment 
of other partners and/or to assemble a given complex. 
Examples of factors that have variable kinetics include 
transcription factors45,53,55–57, core transcription machin-
ery58–60, chromatin remodelling complexes61 and specific 
nucleosomes on the gene body and at the promoter3,54.

Transient binding can result in patterns of tran-
scriptional activity and gene expression that last many 
hours62,63. Indeed, single-cell analyses in various systems 
indicate that there is considerable variation (that is, 
‘noise’) in gene expression64, and this heterogeneity can 
be attributed in many cases to the stochastic nature of 
transcription, which often occurs in punctuated bursts 
of activity5,6,65–68. Understanding the connection between 
transient stochastic interactions and the slow temporal 
patterns of transcriptional activity has thus become a 
pressing question in the field.

The assembly–function–dissociation model and the 
probabilistic model are not necessarily mutually exclu-
sive, but reflect a different mechanistic emphasis. In the 
assembly–function–dissociation model, the emphasis is 
on protein–DNA complexes that assemble in a particular 
sequence and are stabilized by cooperative interactions. 
In the probabilistic model, the emphasis is on fast, sto-
chastic interactions between proteins and chromatin, 
and the implicit suggestion is that putative protein–DNA 
complexes represent a time-averaged view of occupancy 
rather than a stable assembly. Ultimately, these alterna-
tive concepts only have utility if they form the basis 
for quantitative, predictive models of transcriptional  
regulation, which is the subject of the next section.

Quantitative models of transcriptional regulation
Quantitative models have been developed to relate the 
concentration of regulators of a given gene to its tran-
scriptional output (FIG. 1C). These models are commonly 
based on the interaction energies between molecules; 
that is, protein–DNA and protein–protein interactions69. 
In eukaryotes, these models have been quite successful at 
showing how nucleosome positions (both theoretically 
predicted and experimentally derived) at a promoter 
and their perturbation owing to binding of a transcrip-
tion factor are usually highly predictive of the average 
transcriptional activity of a gene70–72. This approach can 
then be used quantitatively to derive a dose–response 
relationship between the concentration of the transcrip-
tion factor and the expression of the gene (FIG. 1C). For 
example, the threshold for activation of the yeast PHO5 

promoter in response to inorganic phosphate is deter-
mined by the affinity of the transcription factor Pho4 
for its cognate binding site, and the dynamic range of 
activation is controlled by the nucleosome occupancy 
of nearby sites73. Therefore, in this model the regulatory 
principle is based on the average occupancy of promoter 
DNA by different complexes, which subsequently influ-
ence the accessibility of specific sites such as activator 
sequences or the TATA box.

Equilibrium thermodynamics. The methods used 
in these models are based on equilibrium thermo-
dynamics. The power of this formalism is that it pro-
vides steady-state properties of a dynamic process 
without having to consider the dynamics explicitly 
(BOX 1). Applied to transcriptional regulation, it allows 
the computation of the probability of each configura-
tion of the promoter — resulting from the association  
and dissociation of molecules and displacement of 
nucleosomes on DNA — without considering the 
kinetic details (FIG.  1C). However, this formalism  
implies certain assumptions about the dynamics.

Although computational methods based on equilib-
rium thermodynamics have proven to be valuable for 
understanding the average transcriptional behaviour 
of a gene, they suggest an inappropriate picture when 
it comes to considering the temporal aspects of tran-
scription. Crucially, the ‘thermodynamic equilibrium 
assumption’, which is central to these models, implies 
that no external energy is consumed (BOX 1). This 
approximation is well-acknowledged72, but the result is 
that the energy dependence of chromatin remodelling 
and covalent modification reactions is hence considered 
to have only a marginal effect. This approximation is 
commonly justified by arguing that remodelling essen-
tially serves to lower high energy barriers, thus helping 
the system to sample many configurations and hence 
to reach its equilibrium more quickly72,74,75. However, if 
the underlying kinetic details start to be considered, this 
approximation is clearly limiting.

As discussed in BOX 1, in an equilibrium steady state, 
each reaction is balanced; that is, it takes place equally 
in both directions. Hence, the simple idea of assembly 
followed by function and dissociation — for example, 
the fact that the chromatin is in a different state before 
a transcription factor, remodeller or modifier assem-
bles and after it disassembles — cannot be captured by 
an equilibrium description. Indeed, it would require 
that any complex or enzyme that modifies or remod-
els the chromatin is able (and as likely) to do the exact 
reverse modification, even without having to dissociate 
and reassemble differently. On the contrary, complexes 
or enzymes that carry out opposite tasks are generally 
different (or have to bind the nucleosome in a differ-
ent way) and are often recruited by different factors76,77. 
Although this phenomenology may only margin-
ally affect the steady-state distribution of nucleosome 
configurations, it is very important when considering 
the time between two specific events, for example, the 
association and dissociation of a molecule (BOX 1C) or  
the inactivation of a gene and its reactivation (BOX 2).
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Box 1 | Equilibrium and non-equilibrium statistical thermodynamics

To describe the repartition of water over a landscape, it is possible to 
avoid referring to the complicated laws of hydrodynamics and instead  
to formulate the simple rule: ‘water covers any location below a given 
altitude’. This description can accurately describe a lake, but not a  
river. Indeed, when water is actively displaced by evaporation and 
precipitation, it adopts a different repartition over the landscape (see  
the figure, part A). Such a system can still reach a steady state, but the 
rules to understand it are different: they require an explicit consideration 
of the dynamics.

Energy consumption affects the way reactions are balanced
Equilibrium thermodynamics. The energy dependence of chromatin 
remodelling is often described as passively lowering activation energy 
barriers, thus facilitating reactions in both directions (see the figure, 
part Ba). This implies no actual energy transfer into the system and 
imposes a null net flux for every reaction (that is, all reactions occur 
equally in both directions; shown by equal-weight arrows). This is called 
‘detailed balance’ or microscopic reversibility. This approximation 
allows the application of tools that avoid an explicit dynamic 
description.

Non-equilibrium thermodynamics. Energy consumption actually 
facilitates a given reaction in only one direction (see the figure, part Bb), 
thus creating a driving force that maintains non-null fluxes (shown by 
unequal-weight arrows) throughout the entire system. Reaction rates 
only compensate globally for each state. This is called ‘global balance’.

Fundamental kinetic differences
Part C of the figure shows that two biophysical models based on equilibrium 
and non-equilibrium schemes may have similar average ensemble-level 
behaviours (for example, occupancy levels, mean dwell times or the rate 
of the enzymatic reaction), but they differ in several fundamental kinetic 
aspects. For example, under the non-equilibrium scheme there can be 
both short dwell times and tight binding, the time distributions of dwell 
times can display refractoriness (the dwell time distribution peak is shifted 
to the right), and transcription factor (TF) binding has more-reliable 
outcomes (see the graphs of enzymatic reactions per transcription factor 
binding, where enzymatic reactions are shown as red vertical lines).
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Flux
The net flux of a reaction is the 
difference between the rates at 
which it is observed to occur in 
one direction versus the other. 
When a system satisfies 
detailed balance, the net fluxes 
of all reactions are null.

Equilibrium constant
The ratio of association and 
dissociation rates. In an 
equilibrium context, this 
describes the affinity of a 
molecule for a binding site and 
directly relates to interaction 
energy. In a non-equilibrium 
context, such a ratio does not 
reflect the interaction energy 
and should not be called an 
equilibrium constant 

Non-equilibrium thermodynamics. A non-equilibrium 
model has several advantages for quantitatively predict-
ing transcriptional behaviour. Experimental biologists 
have intuitively used non-equilibrium mechanistic 
descriptions of transcriptional regulation because this 
view considers directionality in reactions and cycling 
of molecular events (FIG. 1A,B). This directionality arises 
from a consideration of the energy dependence of reac-
tions that are involved in transcriptional activation and 
repression78–82. The conceptual difference is that energy 
dependence may not just serve to make things happen 
more quickly or easily (as in the equilibrium view), but 
may give the dynamics a fundamentally different nature 
and make it follow different rules (that is, the non- 
equilibrium view) (BOX 1). The non-equilibrium view 
also takes into account how the kinetic organization of 
the molecular events at gene promoters has a crucial role 
in regulating the time course of transcription.

Equilibrium quantitative models are usually applied 
to pre-initiation processes (binding of transcription 
factors and displacement of nucleosomes), and non-
equilibrium quantitative models are usually applied to 
transcription initiation and elongation72,81,83–86. We argue 
for a unified approach that is based on a non-equilib-
rium description, and give several examples of how this 
conceptual approach provides a different insight into 
transcriptional regulation.

The role of energy dependence
Differences between in vitro and in vivo experiments can 
often be illuminating. Here we describe two instructive 
examples of differing results from in vitro and in vivo 
experiments in which the key ingredient to recon-
cile the two is energy. Both cases reflect an inherently  
non-equilibrium view of in vivo dynamics.

Active nucleosome positioning. The position of nucle-
osomes on genomic DNA is markedly different in vitro 
and in vivo87,88. In vivo, an array of nucleosomes is well-
positioned at the 5ʹ end of genes and nucleosomes are 
progressively less well-positioned further downstream  
in the gene body89. In vitro, only specific features — such 
as the nucleosome-depleted regions (NDRs) immedi-
ately upstream and downstream of the coding region — 
are reproduced87. Several thermodynamic equilibrium 
models have been proposed to explain this organiza-
tion90. They invoke a combination of intrinsic DNA 
sequence preferences and exclusions87,91 (for example, 
NDRs are partly due to stiff nucleosome-excluding DNA 
sequences) and a mechanism referred to as ‘statistical 
positioning’ by which closely packed nucleosome arrays 
form against NDRs owing to steric exclusion between 
neighbouring nucleosomes92–94. These models attempt to 
explain the difference between in vivo and in vitro data 
as being due to the nucleosome:DNA ratio.

However, two recent studies provide a different point 
of view. A first study showed that the inactivation of 
Pol II — a notable energy-dependent machine — forces 
in vivo positions to resemble in vitro ones95. Conversely, 
another study showed that the addition of ATP to a 
preparation containing reconstituted chromatin and 

whole-cell extract makes in vitro positions similar to 
in vivo ones, even at low nucleosome density96. Both of 
these studies suggest that energy-dependent machines, 
instead of simply facilitating nucleosome movements 
on DNA, actively drive and maintain the global nucleo-
some organization away from equilibrium (BOX 1). This 
example clearly illustrates how an equilibrium vision 
can be limiting in understanding even steady-state 
measurements.

Binding at regulatory sites: short and tight. A second 
example that illustrates the role of energy depend-
ence when differentiating between in vitro and in vivo 
behaviour comes from studies of transcription factor 
binding. The short-lived associations of chromatin-
interacting factors with DNA that have been reported 
using live-cell microscopy contrast strongly with 
in vitro measurements of protein–DNA complex half-
lives on the order of tens of minutes to several hours41–44.  
One of the best studied examples is GR, which has 
a dwell time in vivo that is two orders of magnitude 
shorter than in vitro43,97.

Part of the debate surrounding the idea of high turno-
ver is the difficulty in conceiving how complexes can 
function properly if association is transient and hence 
viewed as unreliable and constantly subject to disrup-
tion. However, this outlook originates from an equilib-
rium view in which dissociation results from the thermal 
motion of the medium breaking contacts between mol-
ecules. Thus, the dissociation of a factor from its binding 
site reflects the interaction strength of the factor with its 
cognate site (which depends on the sequence specific-
ity) and binding partners. In that context, the ‘equilibrium 
constant’ is defined as the ratio between the association 
and dissociation rates and is directly linked to the bind-
ing energy and the occupancy level of the binding site98. 
In this view, low occupancy levels and short residence 
times equate to weak interaction strengths. Although 
this principle may apply to the binding of a factor at 
nonspecific locations (that is, other than its target sites), 
it may not hold at regulatory sites.

Indeed, an essential aspect of the puzzle is that the 
mobility of molecules that is observed in living cells 
is closely related to various energy-dependent pro-
cesses such as chaperone activity56,99,100, proteasome- 
dependent degradation45,56,100,101 and chromatin remod-
elling55,102,103. Thus, specific alterations of these pro-
cesses or global depletion of ATP levels induce drastic 
changes in the mobility of the transcription factors in 
the nucleus. Active displacement of a transcription fac-
tor has also been shown in vitro, in a reconstituted sys-
tem that recapitulates the interaction of GR with the 
mouse mammary tumour virus (MMTV) promoter 
template29,55,104. GR recruits the SWI/SNF chroma-
tin remodeller and is evicted owing to the resulting 
energy-dependent remodelling. Importantly, this 
displacement requires the DNA template to be chro-
matinized and the presence of ATP. Without these, the 
transcription factor displays a high occupancy level 
at its cognate site, which is consistent with the stable 
associations that are classically observed in vitro in the 
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Refractoriness
A time distribution function 
that displays an increasing 
phase for short delays is said 
to be refractory because — as 
opposed to an exponential 
distribution — the probability 
for the random event to occur 
is not constant but increases 
over time, thus shaping the 
distribution and reflecting  
the underlying biomolecular 
mechanics.

Memoryless
A process is memoryless if the 
time it takes to complete is 
exponentially distributed, 
indicating that its probability  
of completion does not  
change over time and is hence 
independent of the past. A 
succession of memoryless 
events (for example, sequential 
recruitment of factors) can lead 
to memory.

absence of remodellers. Thus, the in vitro and in vivo 
data can be reconciled: when a factor binds a high-
affinity site, its tight and reliable association leads to  
an energy-dependent reaction that eventually leads  
to its own eviction. The crucial consequence is that in 
the non-equilibrium context, transient interactions and 
low occupancy levels do not mean loose and unreliable 
associations (BOX 1Cb).

The main difference between the two schemes resides 
in the reason why a molecule dissociates. In the equi-
librium scheme, the dissociation comes from thermal 
motion. In the non-equilibrium scheme, once a mol-
ecule is bound to a high-affinity site, it takes several 
kinetic steps before it dissociates (for example, recruit-
ment of the energy-dependent cofactor followed by ATP 

hydrolysis). Hence, the distribution of time that the 
molecule spends on the binding site is fundamentally  
different and can display refractoriness (BOX 1Cb).

Moreover, this non-equilibrium scheme of ‘short and 
tight’ binding is more likely to provide reliable control 
of how the association and dissociation of transcription 
factors and cofactors affect downstream events. Indeed, 
as illustrated in BOX 1, the principle of a transcription 
factor being displaced by the enzymatic reaction it pro-
vokes implies that most associations result in one and 
only one enzymatic event. In a recent study of single-
gene transcription kinetics in yeast18, the measured rate 
of transcription initiation was in quantitative agreement 
with the expected rate at which a transcription factor 
encounters the promoter. Although not formally proven, 

Box 2 | Transcription timing reflects molecular processes

Cis and trans determinants in transcription dynamics
Complex temporal behaviours can emerge from gene regulatory networks. For example, a gene can display various types 
of oscillatory behaviours if the regulatory circuit in which it is involved provides negative feedback151,152. However, 
independently of fluctuations in trans-acting factors, a gene can also display intrinsic spontaneous dynamics stemming 
from the molecular events taking place in cis (for example, at the promoter or on the gene body) (part a of the figure). For 
example, an observation of uncorrelated oscillations of the activity of two reporter genes with identical promoters in 
single cells62 demonstrated that periodicity can come purely from cis mechanisms. Another study29 showed oscillations in a 
minimal in vitro reconstitution of glucocorticoid receptor (GR)‑mediated SWI/SNF remodelling of chromatin templates; 
this assay lacked transcription, hence ruling out any regulatory circuit-based mechanism to explain oscillations.

Shaping the memory of transcription by multistep molecular processes
Recent live-cell microscopy experiments reported that the time it takes for a gene to reactivate after its inactivation can 
display a refractory period62,63; that is, the reactivation time distribution grows and then decays (part b of the figure). This 
property, which is at the origin of intrinsic cis oscillations, is a hallmark of non-equilibrium dynamics (BOX 1) and reflects the 
underlying molecular mechanisms.

The probability of a binding site being encountered by a cognate factor through random motion is independent of how 
long the site has been unoccupied; thus this is a ‘memoryless’ process and implies an exponential time distribution (see the 
‘association’ graph in part b of the figure). The same applies to most elementary reactions, including dissociations, or 
enzymatic reactions occurring after the complex is assembled (see the ‘remodelling’ graph in part b of the figure). The 
distribution of reactivation time can only display refractoriness in a non-equilibrium context, in which the inactivation 
reaction does not occur equally in both directions and there 
are multiple molecular steps before a gene can turn back on. 
This process is said to have ‘memory’ because the probability 
of a gene turning on depends on the past; that is, on how 
long the gene has been inactive. Experimental evidence62,63 
shows that, although active periods are generally short and 
memoryless, inactive periods are long and demonstrate 
memory, thus suggesting that turning a gene on is more 
complex than turning it off.
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Single-molecule 
fluorescence in situ 
hybridization
(smFISH). A microscopy 
technique for labelling and 
visualizing RNA in fixed cells 
using many probes that are 
hybridized to a single 
transcript. For each cell, this 
technique allows the counting 
of the number of RNAs at the 
transcription site (that is, 
nascent RNAs) and also the 
number of RNAs in the cell.

this nearly one‑to‑one ratio is consistent with the ‘short 
and tight’ binding mechanism.

The above hypothesis draws on elements of the prob-
abilistic model and also on non-equilibrium thermody-
namics. This view challenges the notion suggested by 
ChIP results that many factors simultaneously occupy 
the same piece of DNA. Rather, the combinatorial occu-
pancy measured by ChIP may represent a time-averaged 
signal of factors that are present at regulatory elements 
such as enhancers105. To explore directly this hypothetical 
mechanism of transcription factor binding and action, 
it would be necessary to measure dwell times and ATP 
consumption at single active genes in vivo. Presently, 
such measurements are not available. However, it is pre-
cisely this gap that quantitative theoretical models are 
able to bridge.

Transcription kinetics
The dynamics of the transcriptional output provide a 
signature for the dynamics of the transcriptional input. 
In recent years, the ability to measure transcriptional 
output has improved dramatically, and here we discuss 
how time-resolved measurement of gene transcription 
from single-cell microscopy and ensemble biochemi-
cal assays can reveal underlying regulatory principles of 
gene expression.

Population-level measurements can provide substan-
tial mechanistic information. Time-resolved ChIP and 
quantitative RT-PCR studies can elucidate the dynamic 
course of both the transcriptional response and upstream 
pre-initiation events4,29,31 (FIG. 2A). Even steady-state 
measurements such as dose–response curves can reveal 
detailed mechanistic insight (BOX 3). However, for several 
decades we have known that the average behaviour of a 
cell population rarely reflects that of individual cells64,106. 
Indeed, transcription dynamics are closely intertwined 
with the variability in gene expression that is observed at 
the single-cell level (FIG. 2B). Often, the graded response 
of a cell population following treatment with increas-
ing doses of an inducer does not reflect a progressive 
increase of the expression level of the induced gene in 
each cell, but rather stems from the increasing probabil-
ity of a digital response in each cell107. Yet, this digital 
behaviour is not static in time108. In fact, recent time-
lapse studies in single cells have solidified the notion 
that genes switch on and off with periods ranging from 
many minutes to many hours18,62,63 (FIG. 2C). Thus, the 
digital response of a gene depends on when the cell is 
observed. Population measurements can be conceptual-
ized as the superposition of many such dynamic events. 
Investigating transcriptional kinetics in both single cells 
and cell populations is therefore essential for under-
standing the range of behaviours that are exhibited in 
tissues109 and even whole organisms110.

Dynamics at the single-gene level. The different sources 
of expression variability (that is, noise) in gene expression 
can be separated using various experimental and theo-
retical techniques65,111–116. In many cases, a substantial 
component of variability has been linked to a dynamic 
process taking place locally at the gene locus that is likely 

to involve the state of chromatin65,68,112,115,117–119. This 
process can be described as a probabilistic switch of the 
promoter between two states — an active state and an 
inactive state — thus defining time windows for tran-
scription initiation events to take place. This model120 
can account for a continuous range of situations, from 
constitutive expression (that is, the initiation rate is con-
stant over time) to brief pulses or bursts of transcription. 
In constitutive expression, polymerases fire individually; 
in bursting transcription, many polymerases are likely 
to fire in rapid succession (the active period), inter-
spersed with periods of no polymerase firing (the inac-
tive period). For example, in yeast, both kinetic modes 
of expression are observed: housekeeping genes display 
constitutive expression, whereas stress-response genes 
display bursting expression18,121,122.

The fact that this temporal variability differs among 
genes and organisms (including bacteria and eukary-
otes) suggests that transcription dynamics may reflect 
the underlying regulatory principles of a gene123. A first 
indirect approach to uncover these principles is to ana-
lyse the steady-state distribution of gene expression in a 
cell population. Examples of this approach include flow 
cytometry distributions of protein levels68,117,124 or RNA 
counting in single cells using single-molecule fluorescence 
in situ hybridization (smFISH)65,122,125,126. Such studies have 
revealed that noise in gene expression strongly corre-
lates with gene function and with promoter features 
such as the presence of specific DNA elements122,124. 
Chromosomal positioning of a gene also has a pro-
found impact on the characteristics of its transcriptional 
bursting68,115,117. A second indirect approach to observe 
transcriptional dynamics consists of measuring the 
levels of a fluorescent reporter protein in single cells 
using time-lapse microscopy (FIG. 2Ca). From these data, 
the underlying RNA and promoter time-traces can be  
reconstructed using computational methods that can 
interpret the fluctuations in mechanistic terms62,63,127. 
For example, time-dependent fluctuations in a lucif-
erase protein reporter were used to infer fluctuations in 
the transcriptional activity of the gene, and the burst-
ing behaviour was linked to a cis-regulatory motif in 
the promoter63. Finally, a third and more direct way to 
observe transcriptional kinetics is to monitor nascent 
RNAs at the gene locus over time in live cells, using MS2 
and/or PP7 RNA‑labelling technologies5,18,118,119,128,129 
(FIG. 2Cb). Because this strategy relies on imaging RNA, 
it is possible to probe the relative contributions of  
initiation, elongation, termination and export to gene 
regulation18,130–133. In essence, these studies have revealed 
that any aspect of gene bursting can be regulated, includ-
ing frequency68,112,115,124,134,135, burst size65,117,126,136–137,  
initiation rate during the burst18,122 or some combination 
thereof 63,119.

Interpreting bursting kinetics. Single-cell time-lapse 
measurements now span a range from sub-second 
to days, thus providing unprecedented insight into 
the kinetics of transcription and possible clues to the 
upstream regulation. For example, two recent stud-
ies reported that genes exhibit a ‘refractory period’ 
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Hill coefficient
A value describing the 
steepness of a dose–response 
curve at the level of transition 
between a low value and a high 
response. It reflects the level of 
cooperativity in the binding  
of the regulator and equals 1  
in the case of uncooperative 
binding.

immediately following active transcription; that is, there 
is a minimal time that is required to reset a gene before 
transcription can begin again62,63 (FIG. 2Cc). This kinetic 
feature reflects a ‘memory’ in the reactivation process138 
(BOX 2) stemming from the molecular events underly-
ing gene activation. For a single biochemical step or, 
more likely, if one step is rate-limiting, there cannot be a 
refractory period. Indeed, this is the case when the gene 
turns off. Gene inactivation does not exhibit memory: the 
active gene has a given probability to inactivate, regard-
less of how long it has been active in the past. By contrast, 
a refractory period in reactivation reveals that several 
biochemical events are involved in shaping this delay62,63 
(BOX 2); that is, there are several biochemical reactions 
with rates in the same order of magnitude that are likely 
to contribute to the delay. In summary, these experimen-
tal data suggest that turning a gene off is simpler than 
turning it on.

Importantly, memory in the reactivation process 
can only be understood in a non-equilibrium context; 
that is, when energy is consumed. Indeed, the multi-
step scheme that is used to explain the refractoriness of  
reactivation times implicitly relies on the presence  
of a ‘ratchet’62,63,79,82,138,139, which only moves in one 
direction. Without energy, reactions are equally prob-
able in both directions, thus it is not possible to make 
a ratchet or to obtain refractoriness in time distribu-
tions (BOX 1). Interestingly, parallel phenomena occur 
in other molecular processes that operate at different 
timescales. For example, similar kinetic patterns have 
recently been observed in the functioning of a bacterio-
phage DNA packing motor at the single-molecule level140 
(BOX 3). How multiple elementary reactions shape such 
time distributions can be understood using queuing 
theory141,142. Thus, transcription time-profiles are likely 
to carry a substantial amount of information about the 
nature and organization of biochemical reactions at  
promoters (BOX 2).

The cyclic and sequential process we describe here 
for gene activation and inactivation needs to be care-
fully distinguished from the process known in the lit-
erature as the ‘transcription cycle’, although both have a 
multistep and cyclical nature. The ‘transcription cycle’ 
usually describes a polymerase-centred cycle consist-
ing of initiation, elongation, termination and recycling 
of terminated polymerases for subsequent transcrip-
tion19,25,143. This mechanism could in principle induce 
periodicities in transcription kinetics and might be 
detectable in microscopy experiments, but it cannot 
explain the bursting kinetics observed in mammalian 
cells: periodicities from polymerase recycling would 
have a period of roughly the elongation time, which 
is much shorter than the several hours of the bursting 
period144. Alternatively, polymerase recycling can be 
viewed as resulting in memory between single tran-
scription events, whereas the memory that has been 
observed in single cells is between bursts of multiple 
transcription events62.

Chromatin: the memory of transcription kinetics? 
Although the molecular details underlying gene burst-
ing have yet to be elucidated and might differ among 
genes, a proposed mechanism is that chromatin serves 
as the memory of the state of the gene, thus control-
ling the timing of activation and inactivation50,139,145,146. 
Because chromatin-interacting factors have rather short 
residence times, the progressive assembly of complexes 
seems to be an unlikely explanation to account for hour-
long reactivation times63. By contrast, histones remain 
associated for much longer11 and can carry metastable 
modifications. Hence, they constitute a reliable sub-
strate for temporary marks that can serve as the basis 
for a slow multistep progression. This view reconciles 
fast upstream dynamics (of the binding of factors and 
cofactors) with slow downstream dynamics (of gene 
bursting) and provides a way to achieve a time-ordered 
recruitment of cofactors (BOX 3).

Hence, epigenetic modifications of chromatin not 
only can serve as a long-term memory through cell 

Box 3 | Dose–response and stochastic timing in a non-equilibrium context

Steady-state population-level dose–response curves can harbour signatures of 
single-gene kinetics. Ong et al.148 proposed a mathematical framework to decipher the 
order of recruitment of cofactors involved in steroid-responsive gene induction based 
on the shape of the dose-response curve155. They showed that, to account for the 
Hill coefficient value of 1 that was ubiquitously observed under various conditions, 
transcription factors and cofactors need to interact transiently with the gene template. 
This is consistent with a ‘hit and run’ scheme50, in which cofactors only reside on 
chromatin for a short time, but leave a long-lasting modification that allows or 
facilitates subsequent steps (part a of the figure). Importantly, the model requires that 
template-modifying reactions cannot be reversed by the same cofactor — this is the 
essence of a non-equilibrium reaction scheme.

An instructive parallel is the functioning of a bacteriophage DNA packing ring ATPase 
motor. Using a combination of single-molecule optical manipulations and 
mathematical modelling, it was shown that DNA translocation occurs in this motor in 
rapid bursts that are separated by longer dwell times140. The distributions of these 
sub-second dwell times exhibit clear refractoriness, which stems from the multistep 
and sequential binding of four ATP molecules that precedes their hydrolysis (part b of 
the figure). Importantly, the rate of the whole process shows a dose dependence on 
ATP concentration that has a Hill coefficient of 1, which is contrary to what would be 
expected in an equilibrium context (the binding of four identical molecules would yield 
a steeper curve than the one observed). The authors showed using mathematical 
modelling that these two properties require: a tight and mostly irreversible binding of 
ATP molecules and that the four available docking sites on the motor recruit ATP in a 
coordinated, time-ordered manner (similar to the view in which gene reactivation 
requires an ordered sequence of events; BOX 2).
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Metastable
A biochemical or 
conformational feature can be 
qualified as metastable if it is 
very unlikely to disappear 
spontaneously without the 
intervention of an energy- 
dependent enzymatic reaction. 
For example, post-transcrip‑
tional modifications of histone 
tails are metastable, as are 
certain conformational or 
remodelled states of chromatin.

divisions — for example, encoding cell state or identity 
— but they can also have a central role in transcription 
kinetics. In neuroscience, working or immediate mem-
ory is described as “a limited capacity system, which 
temporarily maintains and stores information, […] 
providing an interface between perception, long-term 
memory and action.”147 Chromatin at promoter regions 
may be viewed as the working memory of transcrip-
tion by being the substrate that is dynamically read and 
written both to integrate many incoming signals and to 
achieve temporal coordination among events that result 
in the production of RNA.

Relating single-gene and population assays. Can these 
single-cell dynamic signatures be observed in popula-
tion studies? In some cases they can. Just as steady-state 
measurements such as dose–response curves can reveal 
non-equilibrium mechanistic principles148 (BOX 3), time-
resolved population experiments can reflect single-gene 
stochastic behaviour. Typically, these studies begin with 
the addition of an inducer: for example, after the addi-
tion of oestrogen, the various steps in transcriptional 
activation can be measured4,36,149. In the early stages 
after induction, the cells display a synchronous activa-
tion and are thus amenable to ensemble studies such 
as ChIP. Interestingly, this population response can 
reflect the kinetic signatures that are directly visible 
in studies of single genes in single cells. In particular, 
the refractoriness that is implied by a multistep process 
for transcriptional bursting is expected to result natu-
rally in a periodic behaviour at the population level78,79. 
Many examples of periodic gene responses to activation 
have been published4,14,16,28,29,32,66,150, and the progressive 
nature of cofactor recruitment that has been reported 
in these studies fits well with the multistep view of acti-
vation–inactivation that has been suggested by single-
gene microscopy. However, oscillatory gene behaviour 
may also originate from trans-acting mechanisms, 
such as the interactions among several genes within a  
regulatory circuit151,152.

Although evidence shows that purely intrinsic perio-
dicity can exist (BOX 2), population-level oscillation can 
generally be expected to involve a mixed contribution 
of cis and trans effects. This point of view could help 
to understand population-level experiments more com-
pletely, such as the paradigmatic example of the TFF1 
gene response to oestrogen treatment4. In this context, 
although the observed spontaneous periodic expres-
sion behaviour of the gene is likely to originate from the 
ordered cis recruitment of protein factors, interactions 
among many genes undergoing a similar process could 
maintain synchronization and account for the stereo-
typical and regular nature of the observed time courses. 
Targeted induction of the gene of interest would mini-
mize trans effects, but nonetheless a population meas-
urement cannot separate the contribution of cis and 
trans mechanisms.

Outlook
The regulatory landscape of the human genome has 
come into sharper focus through the efforts of the 
Encyclopedia of DNA Elements (ENCODE) consor-
tium, which has made tremendous strides towards 
identifying cis-regulatory motifs and the trans-acting 
factors that bind them153. A quantitative understanding 
of transcriptional regulation would allow those data to 
be coupled with proteomic data on transcription factor 
abundance154 to predict the firing rate of a polymerase 
from a gene. Clearly, that aim is a distant one. Moreover, 
we also require that such a predictive approach should 
elucidate gene expression variation within a cell popu-
lation, thus shedding light on subpopulations of cells 
that may be important for disease progression and 
development.

We have argued here for a model of transcriptional 
regulation that is based on both single-cell and popula-
tion data that explicitly considers the role of time and 
energy consumption. This view provides an alternative 
conceptual paradigm for understanding combinatorial 
gene regulation and transcription dynamics.
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