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Self-reactive T cells that escape negative selection in the thymus

must be inactivated in the periphery. Anergy constitutes one

means of imposing peripheral tolerance. Anergic T cells are

functionally inactivated and unable to initiate a productive

response even when antigen is encountered in the presence of

full co-stimulation. Recent studies have provided new insights

into the mechanisms responsible for the induction and

maintenance of T-cell anergy. These studies have helped clarify

the nature of the signals that induce tolerance, the cells able to

deliver them and the molecular processes that underlie the

unresponsive state.
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Abbreviations
CTLA-4 cytotoxic T lymphocyte antigen 4

DC dendritic cell

GM-CSF granulocyte-macrophage colony-stimulating factor

IFN interferon

IL interleukin
ILT Ig-like transcript

NFAT nuclear factor of activated T cells

TCR T-cell receptor

TGF transforming growth factor

Th T helper

TNF tumor necrosis factor

Tr T regulatory

Introduction
T cells can discriminate between peptide antigens with

an exquisite degree of specificity, but the T-cell receptor

(TCR) is not intrinsically capable of distinguishing self

from non-self. The majority of self-reactive T cells are

clonally deleted in the thymus, following recognition of

self-antigens expressed on thymic stromal cells [1].

T cells that have exited the thymus remain capable of

making responses to self-antigens, however, and their

ability to distinguish self from non-self in peripheral

lymphoid tissues appears to be conferred by recognition

of co-stimulatory molecules on antigen-presenting cells.

Because co-stimulatory proteins are upregulated during

inflammation, infection and other pathological condi-

tions, sensing their level of expression is an ideal means

of enabling T cells to make the distinction between ‘non-

infectious self ’ and ‘infectious non-self ’ [2].

In this review we have attempted to analyze the large

body of information suggesting that lack of co-stimulation

leads to a state of functional unresponsiveness that has

been termed ‘anergy’. When co-stimulatory signals are

present, T cells proliferate and proceed to make a full-

fledged immune response. By contrast, when co-stimu-

latory signals are absent, T cells become anergic —

unresponsive to secondary stimulation, even if this

includes both TCR and co-stimulatory signals. Thus,

co-stimulation provides not only the second signal that

is needed for a T cell to proliferate, it also provides signals

that prevent anergy induction.

Activating and tolerogenic signals provided
by co-stimulatory proteins
Although a large number of co-stimulatory ligand–recep-

tor pairs are now known, the CD28–CTLA-4–B7 triad

remains the best characterized. The CD28 and CTLA-4

(cytotoxic T lymphocyte antigen 4) receptors on T cells

both bind the ligands B7-1 (CD80) and B7-2 (CD86) on

antigen-presenting cells (CTLA-4 with �10-fold higher

affinity than CD28) but exert positive and negative

influences on T-cell activation, respectively (reviewed

in [3–5]). Although the simple absence of co-stimulation

is sufficient to induce anergy in effector T cells and T-cell

clones in vitro, CTLA-4 engagement may be necessary to

induce anergy in naı̈ve CD4þ T cells in vivo, as judged by

the fact that CTLA4�/� cells are significantly more resis-

tant to a tolerizing regimen that involves adoptive transfer

and stimulation with soluble antigen in comparison to

wild-type T cells [6].

Because CTLA-4 is expressed at high levels only after

T-cell activation, one interpretation of these data is that

anergy induction in naı̈ve T cells requires the previous

step of suboptimal activation. Indeed, numerous studies

show that naı̈ve T cells receiving a tolerogenic stimulus

undergo an initial activation and/or expansion phase

before achieving a tolerant state. During this phase they
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may demonstrate effector functions similar to those

demonstrated by their counterparts that have received

immunogenic stimuli [7,8�]. In one study, anergy induc-

tion in of naı̈ve CD4þ T cells ex vivo depended on

suboptimal co-stimulation mediated through binding of

the T-cell integrin leukocyte function-associated antigen

(LFA-1) to its ligand intercellular adhesion molecule

(ICAM-1) [9]. Thus, a possible mechanism for tolerance

induction in naı̈ve cells in vivo is that an initial phase of

activation and/or expansion is followed by high-level

engagement of CTLA-4, which imposes anergy by

attenuating CD28 signaling. In this scenario, the major

target of anergy in vivo is not the naı̈ve T cell, but rather a

preactivated (or partially preactivated) T cell that might

or might not have acquired some effector function.

To explain the resistance of CTLA-4–/– T cells to tolerance

induction in vivo, an alternative view is that CTLA-4

directly suppresses the response of naı̈ve T cells, which

express low levels of surface CTLA-4 [5]. CTLA-4 signal-

ing appears to prevent cell cycle entry and cause cell cycle

arrest [10,11], and several ex vivo studies indicate that

blocking cell cycle progression in naı̈ve T cells induces

anergy even in the presence of adequate co-stimulation

[12,13]. The form of T-cell anergy induced by cell cycle

blockade appears to differ mechanistically from that

induced by co-stimulation blockade [10], thus both

mechanisms may operate during tolerance induction in
vivo. In contrast to CD4þ T cells, CD8þ cells can become

anergic in the absence of CTLA-4 and might even require

CD28 co-stimulation [14,15]. A major determinant of

tolerance in CD8þ T cells is lack of CD4þ T-cell help [16].

In addition to CD28, several other molecules function as

co-stimulatory molecules for T cells. Most belong to the

extended CD28–B7 family, which includes inducible

co-stimulatory molecule (ICOS)–B7h and programmed

death 1 (PD1)–PD1L1/L2, whereas others belong to the

TNF–TNFR family (OX40–OX40L, 4-1BB–4-1BBL,

TNF-related activation-induced cytokine [TRANCE]–

receptor activator of NF-kB [RANK], CD70–CD27 and

CD153–CD30) [17]. Corresponding to the opposing prop-

erties of CD28 and CTLA-4, some of these molecules have

positive and some have negative co-stimulatory functions;

moreover, different ligand–receptor pairs might act in

different cell types. Thus, ligation of CD137, a member

of the TNF superfamily, prevents anergy induction in

cytolytic T cells [18], whereas blockade of two other

members of the TNF superfamily, Light and CD40,

induces T-cell anergy and prevents graft versus host dis-

ease [19].

Dendritic cells can deliver tolerogenic
signals
Maturation status determines dendritic-cell function

Dendritic cells (DCs) play key roles in T-cell activation,

as they are extremely effective in priming naı̈ve T cells.

DC maturation is required for optimal antigen presenta-

tion: immature DCs are active in antigen uptake and

processing but show only moderate surface expression of

MHC class II and little or no expression of co-stimulatory

molecules (e.g. B7, CD40). DC maturation is stimulated

by lipopolysaccharide (LPS) and various cytokines (IL-1,

GM-CSF, TNF-a), and the resulting mature DCs express

much higher levels of co-stimulatory molecules and

MHC, and are significantly more capable of eliciting

T-cell activation.

Recent evidence indicates that DCs are also pivotal in

regulating immune tolerance. In general, tolerogenic DCs

correspond to immature DCs, which bear low levels of co-

stimulatory molecules, whereas immunogenic DCs have

matured to express high levels of MHC molecules as well

as co-stimulatory ligands. Thus, the immunosuppressive

cytokine IL-10 interferes with DC maturation, inhibiting

expression of MHC class II, co-stimulatory proteins and

secretion of inflammatory cytokines [20]; it also confers

tolerogenic capabilities on DCs, which are then able

to induce T cells with suppressor activities [21�,22�].
Tolerogenic DCs can also be generated ex vivo by treating

them with TGF-b or a variety of immunosuppressive

drugs that inhibit DC maturation (e.g. cyclosporine A and

FK506, rapamycin, glucocorticoids such as dexametha-

sone, aspirin, vitamin D, N-acetyl-L-cysteine and deox-

yspergualin [23–25]). DCs in many tumors lose their

immunostimulatory functions in concert with decreased

expression of co-stimulatory molecules, apparently

because their maturation is prevented by immunosup-

pressive cytokines secreted by the tumors [26]. This

process might be largely responsible for the development

of immune tolerance to tumors.

Characteristics of tolerizing populations of dendritic

cells

Specific subsets of immature tolerizing DCs have been

identified and characterized by their function and expres-

sion of surface markers. The recurring theme is that,

despite different protocols for generation and the expres-

sion of different surface phenotypes, tolerogenic DCs

bear low levels of co-stimulatory molecules and often

low levels of MHC proteins.

Specific subsets of immature tolerizing DCs have been

identified and characterized by their function and expres-

sion of surface markers. The recurring theme is that,

despite different protocols for generation and different

surface phenotypes, tolerogenic DCs bear low levels of

co-stimulatory molecules and often also low levels of

MHC proteins. Thus, the targeting of peptides to imma-

ture DCs leads to tolerogenic presentation to both CD4þ

and CD8þ T cells. Maturation signals provided by CD40

engagement transform these signals and the DCs turn

from being tolerogenic to inducing T-cell activation and

proliferation [27,28�,29]. Similarly, CD11clowCD45RBhigh
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DCs, obtained by culturing bone marrow cells with

combined IL-10, GM-CSF and TNF-a, were tolerogenic

and expressed low levels of MHC class II, CD80 and

CD86 [30�]. DCs with a similar surface phenotype were

identified in spleen and lymph nodes of normal mice and

were shown to be significantly enriched in IL-10 trans-

genic mice.

CD40 plays a crucial role in DC maturation and immu-

nogenicity, as apparent from the fact that DCs from

CD40�/� mice are tolerogenic with low-level expression

of MHC class II and CD86 [31]. NK/DC (CD11cþ/DX5þ),

bitypic regulatory cells sharing the phenotype and func-

tional properties of NK cells and DCs, were shown to

mediate tolerance induced by CD40L blockade in a model

of virally induced type 1 diabetes. These cells possessed

antigen-presenting cell function but expressed reduced

levels of MHC class II [32]. Inhibition of CD40-mediated

signaling and NF-kB activation generated CD8þCD28�

suppressor T cells, which provoked increased expression

of the Ig-like inhibitory receptors Ig-like transcript 3

(ILT3), ILT4 on human immature DCs. The resulting

DCs were tolerogenic, did not express CD80 or CD86, and

were capable of anergizing CD4þ T cells [33�].

As discussed in a later section, however, some tolerogenic

properties of DCs are more attributable to their effects on

T-cell differentiation, cytokine production and regulatory

T-cell function than to direct induction of anergy through

decreased co-stimulatory function. Yet another mechan-

ism of tolerance induction by DCs is associated with

increased expression of indoleamine 2,3 dioxygenase, a

tryptophan-catabolizing enzyme [34�,35�].

Clinical applications of co-stimulatory
blockade
The goal in treating autoimmune and transplant patients

is to re-establish specific tolerance to self-antigen, with-

out causing generalized immunosuppression. Many of the

strategies attempted have been shown to work at least in

part through co-stimulatory blockade and the resulting

development of anergy. Graft survival has been pro-

longed by blocking CD28–B7 interactions with CTLA-

4Ig, either alone or in combination with anti-CD154,

which blocks CD40–CD40L interactions [36,37]. How-

ever, permanent tolerance is not achieved unless the cell

cycle inhibitor rapamycin is added to these regimens [38],

consistent with the hypothesis that cell cycle blockade

and co-stimulatory blockade induce distinct but com-

plementary forms of tolerance. In bone marrow trans-

plantation, co-stimulatory blockade elicits long-lasting

tolerance [37]. Host CD4þ T cells that are donor reactive

are first anergized, and they maintain tolerance until they

are deleted in the periphery [39,40], whereas regulatory

T cells seem to play a role in suppressing CD8þ but not

CD4þ T cells [37]. In other cases, co-stimulatory block-

ade alone has failed to support permanent engraftment

despite prolonged acceptance of a graft, probably due to

the fact that CD8þ T cells are less dependent on CD28–

CD40 co-stimulation than CD4þ T cells [41,42].

Attempts to treat autoimmune diseases have included

systemic or mucosal administration of antigens or altered

peptide ligands, which elicit TCR stimulation in the

absence of co-stimulation. Tolerance induction depends

on the dose and physical–chemical form of the antigen

as well as the route of administration. Oral or intravenous

administration of soluble proteinaceous antigens causes

anergy or deletion [6,43]. The use of recombinant MHC

peptide complexes is also useful at eliciting anergy [44].

The administration of antigens in a tolerogenic form has

been attempted in autoimmune diseases in humans [45],

and co-stimulatory blockade with anti-CD154 (CD40L)

has been used to prevent recurrent autoimmune dia-

betes in islet-allografted non-obese diabetic (NOD)/Lt

mice [46].

The therapeutic potential of tolerogenic DCs in trans-

plantation and autoimmune disease has been tested in

animal models. Myeloid DCs genetically engineered to

express immunosuppressive proteins (such as IL-4, IL-

10, TGF-b or CTLA-4Ig) can prolong allograft survival or

inhibit autoimmune diseases [47]. Likewise, treatment

with tolerogenic DCs, prepared in vitro by treating DCs

with immunosuppressive agents [23] was effective in the

modulation of allograft rejection [48] and led to the

amelioration of various animal models of autoimmune

disorders, including diabetes [49], multiple sclerosis [50],

myasthenia gravis [51] and collagen-induced arthritis

[52]. Overall, tolerogenic DCs generated in vitro have

diverse potential applications for inducing tolerance in

transplantation and autoimmune disease.

Biochemical mechanisms of T-cell anergy
As mentioned in a previous section and comprehensively

reviewed earlier [53�], it is probable that several forms of

‘anergy’ exist that have not yet been distinguished bio-

chemically. Part of the confusion undoubtedly arises from

the variety of co-stimulatory molecules that modulate the

TCR response and the experimental difficulties involved

in studying their effects in isolation [3]. Here, we focus on

anergy induced by lack of co-stimulation rather than

anergy induced by blocking cell cycle progression. The

most consistent property of anergic T cells is decreased

proliferation and production of IL-2 [53�]. Anergy has also

been defined as an unresponsive state that can be

reversed by IL-2, but it is not established that IL-2

responsiveness is an essential characteristic of an anergic

T cell [53�]. Nevertheless, IL-2 responsiveness provides

two useful experimental criteria, demonstrating that the

anergic T cell is activated to the extent that it bears a

high-affinity IL-2 receptor and confirming that it is unre-

sponsive rather than non-viable. An important point is

that anergy is only a relative measure of an immune
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response. Although substantial decreases in responsive-

ness (>100-fold) can be achieved in vitro, much smaller

decreases (5- to 10-fold) are also likely to have significant

effects on disease progression in vivo.

Phase 1: induction of anergy

Which signals operate during the initial induction of

anergy, and which characterize the fully-anergic state?

Calcium signaling is clearly critical for the first step of

anergy induction. As discussed elsewhere [54�], lack of

CD28 co-stimulation correlates strongly with an unba-

lanced or partial form of signaling in which TCR-

mediated calcium influx predominates: CD28 ligation is

not itself coupled to calcium mobilization, and CD28-

derived signals potentiates only those aspects of TCR

signaling that do not involve calcium influx. As a con-

sequence, treatment of T cells with calcium ionophores

induces an anergic state that appears to be closely related

to that induced by insufficient co-stimulation. Calcium-

induced anergy is mediated primarily by nuclear factor

of activated T cells (NFAT), a transcription factor regu-

lated by the protein phosphatase calcineurin, and both

NFAT activation and anergy induction are blocked by

the calcineurin inhibitors cyclosporin A and FK506 [55].

During a productive activation NFAT proteins are

dephosphorylated and translocate to the nucleus where

they cooperate with members of the AP-1 family of

transcription factors to induce the expression of T-cell

activation-associated genes. Sustained small increases in

intracellular calcium induce activation of NFAT proteins

while failing to activate other transcription factors [56].

Induction of calcium-induced unresponsiveness corre-

lates with expression of a new set of NFAT-dependent

genes that are independent of NFAT–AP-1 cooperation

and do not overlap with genes activated during productive

stimulation. These anergy-associated genes encode sev-

eral classes of proteins that could function as negative

regulators of TCR signaling and TCR-induced transcrip-

tion, thus defining a genetic program associated with

reduced responsiveness [54�]. Cell hybrids produced by

fusing anergic and non-anergic T cells maintain an aner-

gic phenotype, confirming that anergic T cells express

negative regulatory proteins that dominantly suppress

TCR activation [57].

Phase 2: implementation of anergy

What is the nature of the block in activation in an-

ergic T cells? There is evidence for a variety of different

mechanisms, not mutually exclusive. The calcium/

calcineurin-induced genetic program associated with T-

cell anergy includes genes encoding phosphatases, pro-

teases and transcriptional repressors [54�], and there is

evidence that each of the corresponding mechanisms

(dephosphorylation and proteolysis of signaling proteins,

and direct transcriptional repression of effector cytokine

genes) operate to reduce T-cell responsiveness and

impose T-cell anergy.

1. Among the calcium-induced anergy-associated genes

are genes encoding at least three E3 ubiquitin

ligases, which mediate the selective degradation of

specific signaling proteins (V Heissmeyer et al.,
unpublished): Itch and Cbl-b, whose mutation or

deletion in mice is associated with disseminated

autoimmune disease, and gene related to anergy in

lymphocytes (GRAIL), a transmembrane, endosome-

associated RING-finger protein whose overexpres-

sion blocks IL-2 induction [58��].
2. Instead of binding activating AP-1 dimers, regions of

the IL-2 promoter in anergic T cells preferentially

bind to the repressor complexes CREB–CREM

(cAMP response element binding protein–cAMP-

responsive element modulator; [59]). Similarly, aner-

gic cells show overexpression of Tob, which promotes

enhanced binding of Smad proteins to a negative

regulatory element in the IL-2 promoter [60].

3. Anergic T cells have a defect in Ras activation that

correlates with deficient extracellular signal-related

kinase (ERK) and Janus kinase (JNK) activity

[61,62]. Activation of the small G protein Rap1

seems to be responsible, at least in part, for this

block: in the absence of B-Raf, which preferentially

associates with Rap1, activated Rap1 competes with

Raf1 for activated Ras, thus diminishing signaling

through the Ras–Raf–ERK pathway [63]. Indeed,

anergy is prevented by overexpression of B-Raf in

T cells [64]; however, analysis of Rap1-transgenic

T cells indicates that Rap1 positively regulates TCR

signaling by increasing cell adhesion [65]. Poten-

tially, Rap1 has a dual function and its ability to

signal positively or negatively might be regulated

by differences in the levels and kinetics of its

expression [66].

4. Anergic cells also show defects in integrin avidity,

probably caused by defective phospholipase Cg1

(PLC-g1) activation, which results in defective integ-

rin-mediated adhesion [19,67].

5. The src-family kinase Fyn has been implicated in

maintenance of the anergic state: Fyn is hyperpho-

sphorylated in anergic cells [63,68], and soluble

dimeric MHC molecules that induce T-cell anergy

displace Lck from GM1-rich membrane domains with

relative enrichment in TCR-associated Fyn and poor

recruitment of ZAP70 [69].

6. Finally, lack of proliferation is a hallmark of anergic

T cells. Anergy-associated cell cycle arrest correlates

with increased levels of p27kip1, an inhibitor of cyclin-

dependent kinases, which promotes cell cycle arrest in

G1 [70]. Increased levels of p27kip have been demon-

strated in several in vivo and in vitro systems of T-cell

anergy [70–73]. The absence of signals from CD28 and

other co-stimulatory receptors, as well as signals from

negative coreceptors (e.g. CTLA-4), might also pro-

mote anergy induction in T cells: for example, CD28

co-stimulation is needed for adequate downregulation
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of p27kip1 through activation of phosphatidylinositol

3-kinase (PI3K)–protein kinase B (PKB) pathways

[74].

Relationship between tolerogenic dendritic
cells, anergic T cells and regulatory T cells
There is increasing evidence for functional interactions

between tolerogenic DCs, anergic T cells and regulatory

T cells. Anergic T cells are relatively long-lived and can

persist in vivo as unresponsive cells [75]. Similar to

anergic T cells, CD4þCD25þ regulatory T cells are

unresponsive to TCR stimulation, although they remain

responsive to IL-2 [76]. Conversely, and similar to

CD4þCD25þ regulatory T cells, anergic T cells gener-

ated in vitro with immobilized anti-CD3 can inhibit the

proliferation of responsive T cells in a manner that

requires cell–cell contact [77] and, when injected, they

can prolong skin and islet allograft rejection [77,78]. The

active role of anergic T cells in immune suppression

appears to be mediated at least partly through effects

on DC function [79,80]; however, DCs can render T cells

anergic, as described in a previous section. DCs from the

mucosal system, which are known to be more tolerogenic

than systemic DCs derived from lymph nodes and spleen,

also participate in the generation of regulatory T cells by

expressing high levels of IL-10 upon stimulation and

priming naı̈ve T cells to differentiate in T helper 2

(Th2) and T regulatory 1 (Tr1) directions and secrete

high levels of IL-4 and IL-10 [81]. Calcium-induced

anergy is also a potential means of generating regulatory

T cells: it spares IL-10 expressed by Th2 and Tr1 cells,

thus providing a cytokine milieu that is permissive for

further autocrine generation of IL-10-producing Tr1 cells

[54�]. At this stage, these observations are provocative but

unconnected, as they have been obtained in different

systems. Further systematic investigation is warranted, as

it will undoubtedly uncover additional connections

between the diverse cell types and mechanisms that

maintain self-tolerance in the organism.

Conclusions
The targeted deletion of a surprising number of immune-

related genes is associated with hyperproliferation of T or

B cells or frank autoimmune disease. Genetically, these

genes all represent negative regulators that suppress self-

reactivity by enforcing negative selection of self-reactive

lymphocytes, interfering with generation or function of

regulatory T cells, attenuating signaling through T- or B-

cell antigen receptors, or promoting apoptosis of periph-

eral T and B cells. Of these outcomes, T-cell anergy

might represent a default genetic program, globally

imposed on peripheral T cells by low-level calcium influx

occurring in response to recognition of self-antigens.

Controlling self-reactive cells in the periphery is of vital

importance to the health and reproductive fitness of an

organism, and preventing their activation would confer a

significant evolutionary advantage. The variety of dif-

ferent mechanisms for induction and maintenance of

anergy that we have described in this review could

represent independent and complementary strategies,

developed gradually over the course of evolution, to

ensure the functional inactivation of self-reactive T cells

that have escaped negative selection in the thymus.

Exploiting the mechanisms of peripheral tolerance is

practical and likely to be rewarding from a therapeutic

point of view.
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Now in press
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This paper provides evidence for a complex and multistep program of
anergy induction and implementation, which involves upregulation of the
E3 ligases Itchm, Cbl-b and GRAIL during the step of anergy induction.
This is followed by mono-ubiquitination, lysosomal targeting and proteo-
lytic degradation of membrane-proximal signaling proteins phospholi-
pase Cg1 (PLCg1) and protein kinase Cy (PKCy), and disintegration of the
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