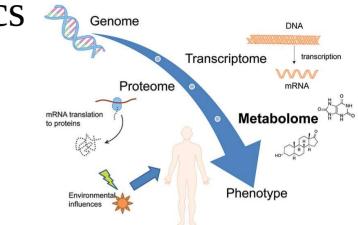
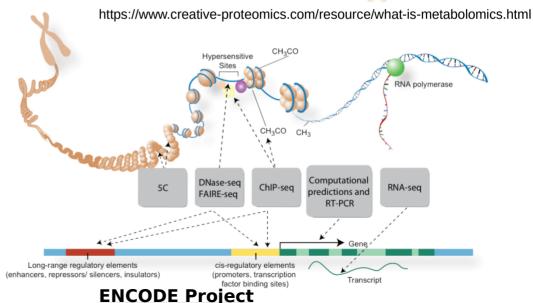
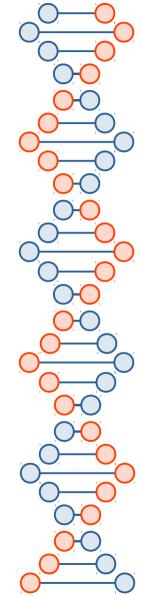


Omics Data Analysis

(Lunch & Learn)

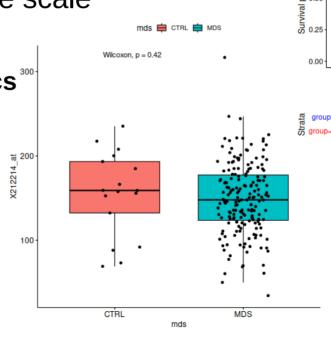

Kith Pradhan

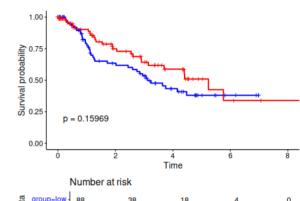

Nov 17, 2025



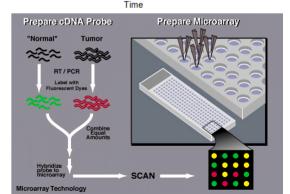
What is Omics

- The study of biological molecules at large scale
 - Genomics
 - Transcriptomics
 - Proteomics
 - Metabolomics
 - Epigenomics
 - Lipidomics
 - Microbiomics

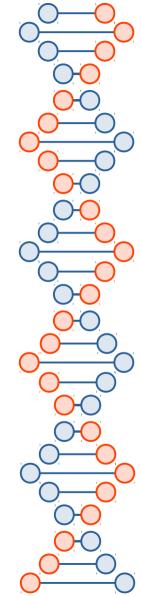



Example: Microarray

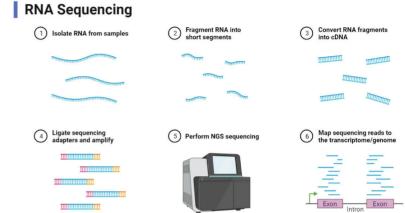
 The study of biological molecules at large scale



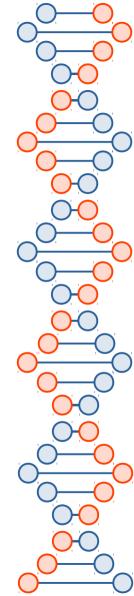
- Transcriptomics³⁰⁰
- Proteomics
- Metabolomics
- Epigenomics
- Lipidomics
- Microbiomics



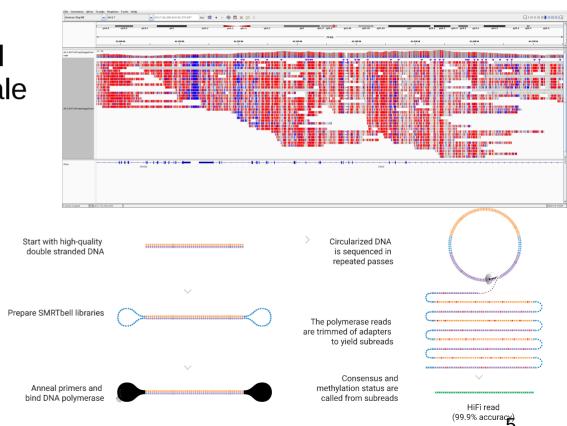
low<=147.88066 high>147.88066



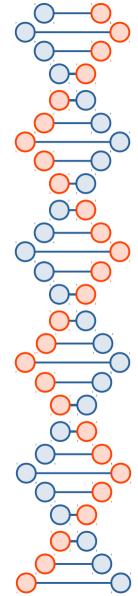
https://www.genome.gov/about-genomics/fact-sheets/DNA-Microarray-Technology


Example: NGS RNA-seq

- The study of biological molecules at large scale
 - Genomics
 - Transcriptomics
 - Proteomics
 - Metabolomics
 - Epigenomics
 - Lipidomics
 - Microbiomics

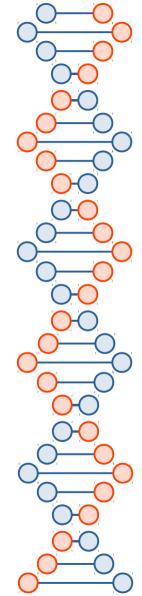


https://microbenotes.com/rna-sequencing-principle-steps-types-uses/



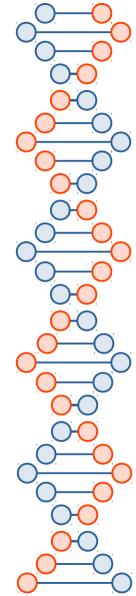
Example: PacBio HiFi-seq

- The study of biological molecules at large scale
 - Genomics
 - Transcriptomics
 - Proteomics
 - Metabolomics
 - Epigenomics
 - Lipidomics
 - Microbiomics


https://www.pacb.com/technology/hifi-sequencing/

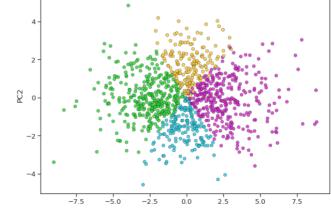
The Biggest Issue in Omics Analysis?

- The differences between
 Omics technologies are
 vast and each requires
 specialized tools to process
 and analyze.
- But there is a common issue shared across all.
 - # of variables: N
 - # of observations: M
 - N >> M

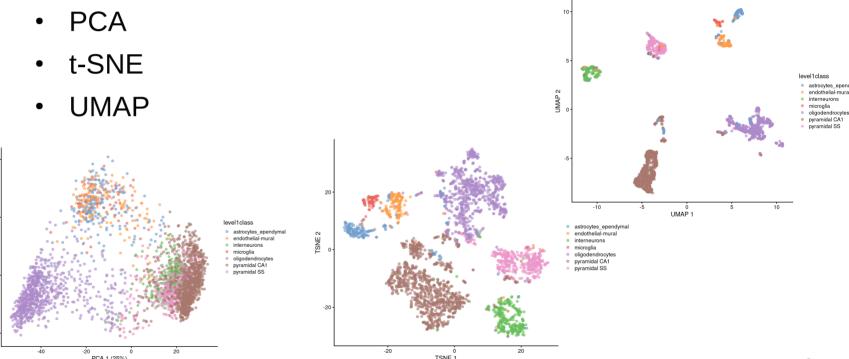

1	1								
ENSEMBL	ENTREZGENE	SYMBOL	Mock1.1	Mock2.1	ZIKV1.1	ZIKV2.1	Mock1.2	Mock2.2	ZIKV1.2
ENSG00000010030	51513	ETV7	0.0708594	0	0.3114447	0.2252182	0.0493682	0.0367962	0.2537942
ENSG00000010072	83932	SPRTN	3.1900906	2.6378208	3.0984427	3.2892438	3.6348061	3.2145277	4.6315328
ENSG00000010165	51603	METTL13	4.9670487	4.2128095	3.6224677	3.5393062	4.4813932	4.3178785	3.6262744
ENSG00000010219	8798	DYRK4	2.0031906	2.0030852	3.4851214	2.9813266	2.0685315	2.0866457	3.0435702
ENSG00000010244	7756	ZNF207	12.419449	12.024094	12.350847	13.169165	15.314333	14.552613	16.34819
ENSG00000010256	7384	UQCRC1	40.287622	40.417455	40.098703	38.056824	38.66833	40.203852	43.152384
ENSG00000010270	83930	STARD3N	19.151117	17.581794	20.533327	19.142134	22.498407	21.205717	25.820423
ENSG00000010278	928	CD9	1.3767652	1.0982165	0.3922089	0.7563255	0.9651221	1.1430112	0.4565833
ENSG00000010282	57467	HHATL	0	0.0626603	0	0	0.0202698	0.020144	0.0208408
ENSG00000010292	9918	NCAPD2	32.54455	29.572793	14.275639	14.808391	30.03627	28.103656	14.74612
ENSG00000010295	20000	IFF01						5.4397063	
ENSG00000010310	2000		0.4262339	0.002.010				0.00.00	0.0000
ENSG00000010318	51533				1.3344099				1.1192984
ENSG00000010319			0.0671404		0			0.0958788	
ENSG00000010322		NISCH	29.013					27.365164	
ENSG00000010327		STAB1	0					0.0068753	
ENSG00000010361	80199		0.0.0000	0.0002111	O OEZOE			5.6212736	0.000.00
ENSG00000010379			0.0792931	0.0.000	0.2613846				0.3408008
ENSG00000010404	3423		16.637373	17.058433	19.773289				25.156345
ENSG00000010438			0.2021879		0				0.1689724
ENSG00000010539		ZNF200	1.8396994	1.8361512	1.9475265	2.020396	2.1310069	2.0951206	2.5794192
ENSG00000010610		CD4	0.2936423	0.20.000.	0.20202	0.220000	O.E. I	0.3017913	0.20.002
ENSG00000010626	20200		3.8557374	3.8555346	3.08676	2.2759283	3.1532244	3.4991297	2.8737798
ENSG00000010671		BTK	0		0.0404027				0.0219493
FNSC00000010704	3077	HEF	U UE02812	0	n nee1427	U U838U08	0.013769	N N128274	し しょなのうなど

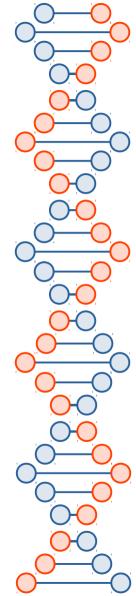
$N \gg M$

- How do we address this?
 - 1. Dimensionality reduction
 - 2. Choosing the right test
 - 3. Dealing with the multiple comparisons in N variables


ENSEMBL	ENTREZGENE	SYMBOL	Mock1.1	Mock2.1	ZIKV1.1	ZIKV2.1	Mock1.2	Mock2.2	ZIKV1.2
ENSG00000010030	51513	ETV7	0.0708594	0	0.3114447	0.2252182	0.0493682	0.0367962	0.2537942
ENSG00000010072	83932	SPRTN	3.1900906	2.6378208	3.0984427	3.2892438	3.6348061	3.2145277	4.6315328
ENSG00000010165	51603	METTL13	4.9670487	4.2128095	3.6224677	3.5393062	4.4813932	4.3178785	3.6262744
ENSG00000010219	8798	DYRK4	2.0031906	2.0030852	3.4851214	2.9813266	2.0685315	2.0866457	3.0435702
ENSG00000010244	7756	ZNF207	12.419449	12.024094	12.350847	13.169165	15.314333	14.552613	16.34819
ENSG00000010256	7384	UQCRC1	40.287622	40.417455	40.098703	38.056824	38.66833	40.203852	43.152384
ENSG00000010270		STARD3N	19.151117	17.581794	20.533327	19.142134	22.498407	21.205717	25.820423
ENSG00000010278		CD9				0.7563255	0.9651221		0.4565833
ENSG00000010282	57467	HHATL	0	0.0626603	0	0	0.0202698	0.020144	0.0208408
ENSG00000010292		NCAPD2	32.54455	29.572793	14.275639	14.808391	30.03627	28.103656	14.74612
ENSG00000010295		IFF01	4.9790368	6.1973561	6.5368079	6.3027053	5.0757457	5.4397063	6.9248392
ENSG00000010310		GIPR	0.4262339	0.3824975	0.3122339	0.3386833	0.4536887	0.3842655	0.368934
ENSG00000010318	51533								1.1192984
ENSG00000010319			0.0671404						0.0721422
ENSG00000010322		NISCH	29.013					27.365164	
ENSG00000010327		STAB1	0					0.0068753	
ENSG00000010361	80199							5.6212736	
ENSG00000010379			0.0792931	0.0.00	0.2613846				0.3408008
ENSG00000010404	3423								25.156345
ENSG00000010438			0.2021879						0.1689724
ENSG00000010539	1102	ZNF200	2.000000	I.OUUIUIE	1.9475265	2.02000			2.5794192
ENSG00000010610		CD4	0.2000.20	0.1976334				0.3017913	
ENSG00000010626	20200		3.8557374	0.00000.0	0.00010				2.8737798
ENSG00000010671		BTK	0		0.0404027				0.0219493
FNSC00000010704	3077	HEF	U UE02842	n	n nss1/127	U UB38U08	0.013769	n n12927/	U USSOSSE

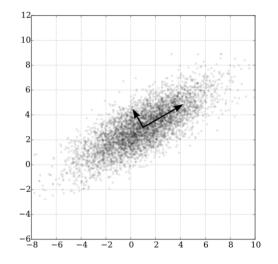
1. Dimensionality Reduction

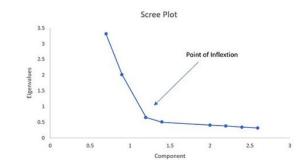

- Huge # of variables to look over
- Hard to show more than 3 vars with traditional plots
- Not all the variables are equally important
- Can we get away with a smaller representation that only

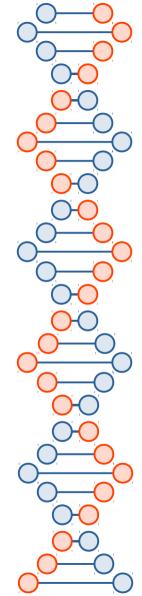

contains relevant informatio

Dimensionality Reduction

Common dimensionality reduction techniques:

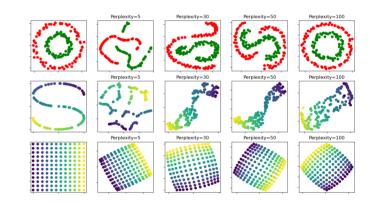


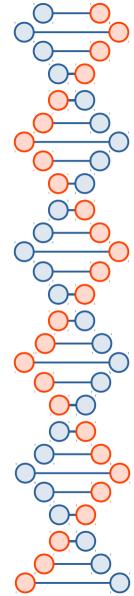



Principle Component Analysis(PCA)

(Pearson 1901)

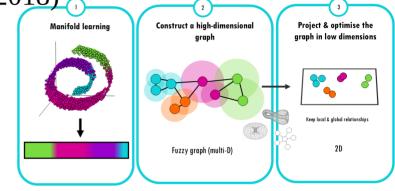
- Linear projections along lines of greatest variance
- Principal components(the new orthogonal axes) are ordered by the amount of variance explained.
- The idea is that we can use a smaller set of these PCs to capture most of the information of the original data.

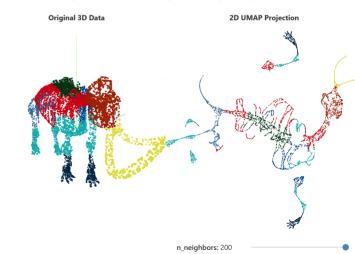


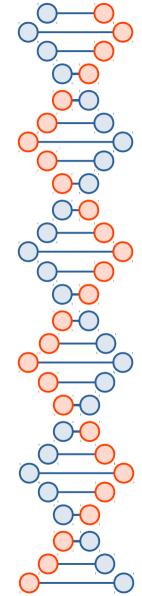


t-distributed Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton 2008)

- A Non-linear approach to dimension reduction
- Idea: Distances between the points in the high dim space should be similar to distance between points in the low dim space
 - · High dim: Distances represented by Gaussian
 - · Low dim: Distance represented by t-distribution
 - Loss function: Measures differences between the distance representations in high and low dimensions
 - · Kullback-Leibler divergence
- Optimize: find a low dim representation that minimizes the loss function.
 - · Start with a random low dim representation
 - Iteratively shift points in the low dim space so that loss function goes down
 - · move along the gradient of the Kullback-Leibler divergence
- Key hyperparameter
 - Perplexity: The width of the gaussian or t-distribution.
 - · A wider bell shaped curve means we're looking at more points at each step.

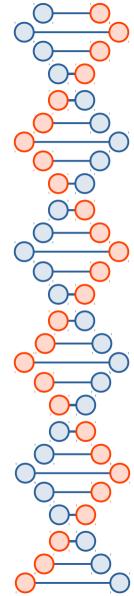



Uniform Manifold Approximation and Projection (UMAP)


(Innes & Healy 2018) How does UMAP summarise many dimensions into 2?

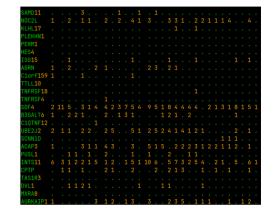
- A Non-linear approach to dimension reduction
- Idea: Distances between the points in the high dim space should be similar to distance between points in the low dim space
 - High dim: weighted sum of k nearest neighbor graphs
 - · Low dim: weighted sum of k nearest neighbor graphs
 - Loss function: Measures differences between the distance representations in high and low dimensions
 - · Cross entropy of adjacency matrices
- Optimize: find a low dim representation that minimizes the loss function.
 - Start with a random low dim representation
 - Iteratively shift points in the low dim space so that loss function goes down
 - · Minimize cross entropy by stochastic gradient descent
- Key hyperparameter
 - n neighbors: how many neighbors to look at

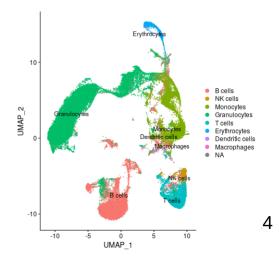
https://biostatsquid.com/umap-simply-explained/

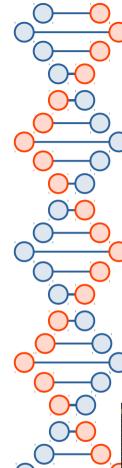

Dimensionality Reduction

Pros

- PCA
 - Easy to interpret
 - Fast
- T-SNE
 - Captures non-linear relationships between variables
 - Preserves local structure
- UMAP
 - Captures non-linear relationships between variables
 - Preserves local and global structure
 - Scalable
 - Stable

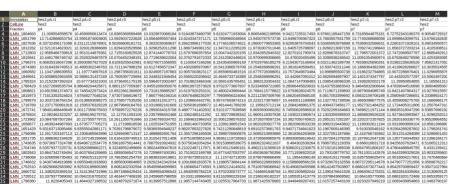

Cons

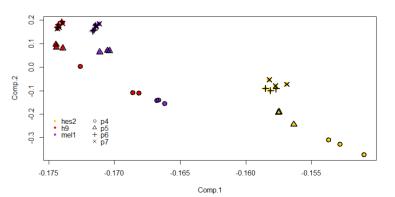

- PCA
 - Only linear relationships
- t-SNE
 - Very slow
 - Changing the perplexity hyperparameter gives very different results across runs
- UMAP
 - Not as good as t-SNE if you're ONLY interested in local structure.

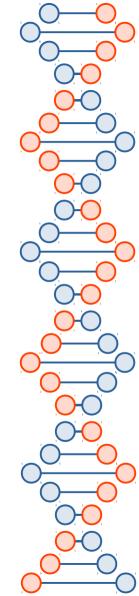


Dimensionality Reduction: example1

- Single-cell sequencing
 - We are able to capture gene expression for each individual cell
 - Too many genes to be able to map out everything
 - A 2D UMAP (or t-SNE) of all cells allows us to:
 - Visually examine the individual cells
 - Pick out clusters of similar cells
 - Identify celltypes of the clusters and their relationships to one another
 - Manual celltype type ID
 - Automatic ID by Machine learning algorithms

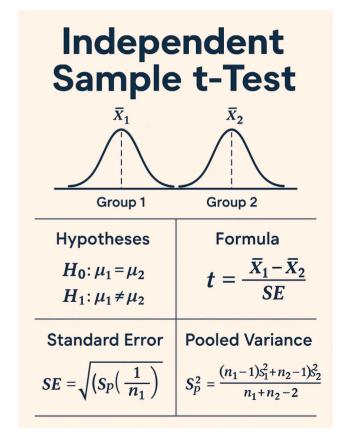


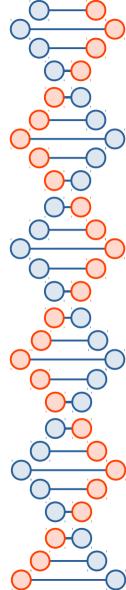




Dimensionality Reduction: example 2

- RNA-seq experiment with a batch effect
 - Examining pluripotency of 3 different cell lines
- A PCA plot of the samples gives us a global picture of gene expression
 - This allows us to identify batch effects visually
 - Once you know they are there, they can be corrected.

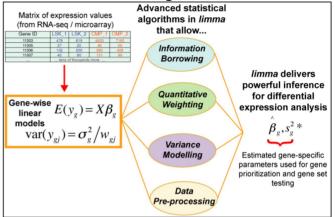


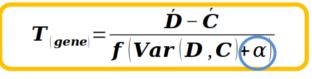


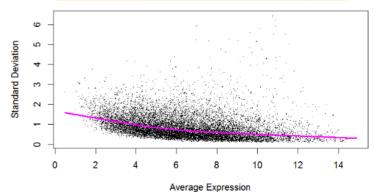
2. Choosing the right test

- A t-test is good for large sample sizes or if data is normally distributed
 - This is usually not the case in Omics datasets
- Each Omics technology needs its own particular methodology
 - 1. A stat that fits the data
 - 2. An "information borrowing" technique to deal with the N >> M problem

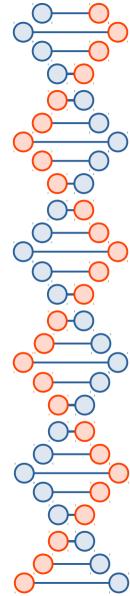
Example 1: Linear Models for MicroArray data

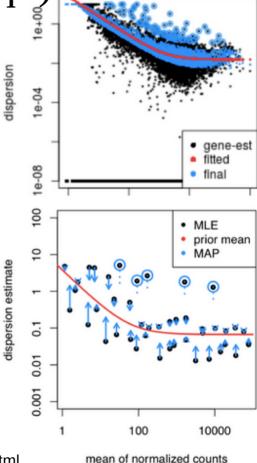

(LIMMA)

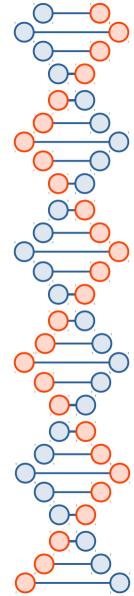

The underlying statistical framework uses empirical Bayes linear


 Conceptually, for simple two group comparisons, it can be thought of as a moderated t-test

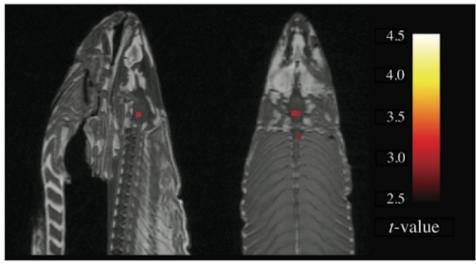
modeling.

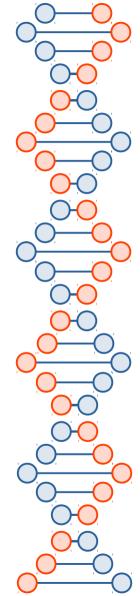

- Looks for differences in gene expression across experimental groups.
- But uses an empirical Bayesian approach to "shrink" variance




https://pmc.ncbi.nlm.nih.gov/articles/PMC4402510/

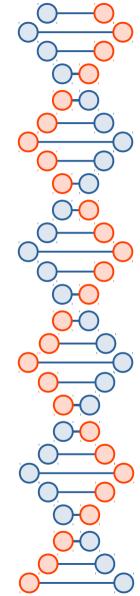
Example 2: Differential Expression analysis for Sequencing data (DESeq2)


- RNA-seq gives us integer counts of the number of read fragments that map within a gene's boundary
- Negative Binomial Regression
 - Like Poisson, but allows for over/under dispersion through parameter (θ)
 - Uses similar genes to estimate the dispersion parameter (θ)



3. Dealing with multiple comparisons

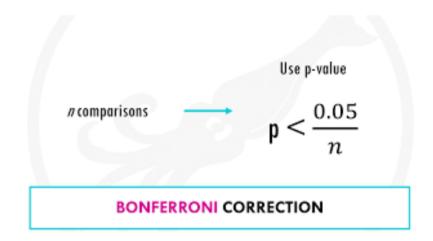
- Type 1 error: Incorrectly rejecting the null hypothesis when the null is true.
 - Finding signal when there really is none there
- If you set significance level (α) at 0.05, and run 50,000 tests across all genes
 - How many false positives do you expect?
 - 50000*0.05 = 2500
- How do you address it?
 - Do nothing
 - Control for FWER
 - Control for FDR

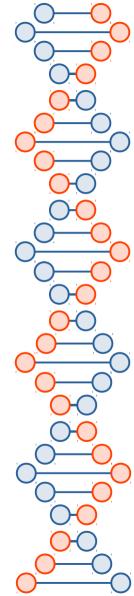


http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf

Dealing with multiple comparisons

- Do nothing:
 - Ok if you have a specific location of interest known beforehand
 - Do NOT look at all the results then select the location of interest
 - Ok if there are a small set of interesting locations known beforehand
 - Show them all
 - Do NOT only show the significant results

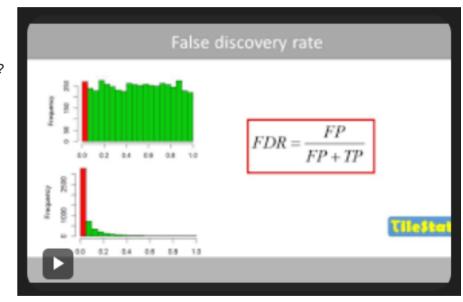

Dealing with multiple comparisons

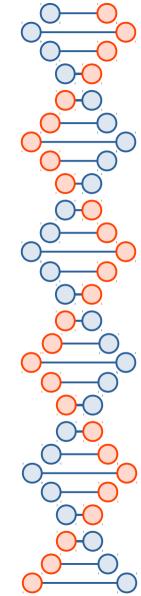

Control for Family-Wise Error Rate(FWER):

- Make at most X false positives across all tests
- How many expected false positives in 100 tests at alpha=0.05?
- How many expected false positives in 100 tests at FWFR=0.05?

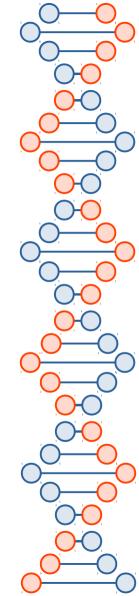
Bonferroni

- Instead of selecting 0.05 as your type I error rate, choose 0.05 / the number of tests
- Makes no assumptions about correlation structure in the multiple tests
- This is the most conservative way to deal with FWER, and is very hard to meet the significance threshold.

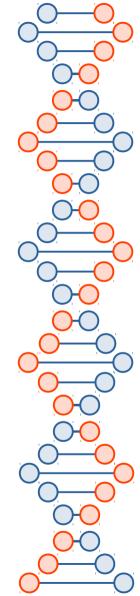


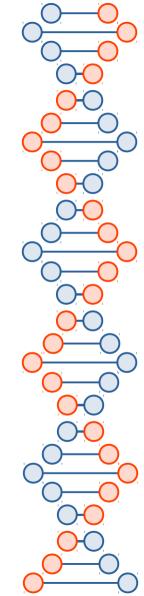


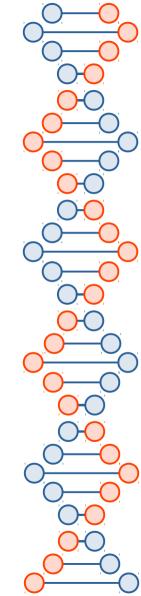
Dealing with multiple comparisons


Control for False Discovery Rate(FDR)

- Type I error rate:
 - In all the tests I've run, how many false positives were there?
- FDR:
 - Among the tests that where deemed significant, how many were incorrect.
- Benjamini-Hochberg Method
 - The least conservative technique and the most widely used in omics studies
 - Define q = V/R where
 V = # false positives,
 R = # discoveries (rejected H₀s).
 - Order the P-values in ascending order, smallest first:
 P(1) < ... < P(N).
 - For α , find the largest k such that $P(k) \le (k/N)\alpha$.
 - Then reject all H0(i) for i = 1, ..., k.




- 1. Plot global signal of all samples
- 2. Look for differential signals or associations across conditions
- 3. Make sure your method deals with multiple comparisons


- 1. Plot global signal of all samples
 - Find outliers or potential problems with the way the data was prepared/processed
- See if there are batch effects that needs to be addressed
- See if there are differences between experimental conditions

- 2. Look for differential signals or associations across conditions
 - Use an R package tailored to your protocol
 - deseq2
 - LIMMA
 - methylkit
 - more
 - Use specialized software developed for your protocol
 - Homer
 - RMats
 - Bismark
 - more
 - Write your own

- 3. Make sure your method deals with multiple comparisons
 - Most of the well known bioinformatics software packages already take care of this
 - At the very least, adjust for FDR

Common filetypes for Omics

- What is a fastq file?
- What is a fasta file?
- What do you get when you map a fastq to a fasta?
- What is a bam file?
- What is a gtf file?
- What is a gene count file?