Schrödinger Workshop 2013

Structure Based Virtual Screening

- Various Approaches

Jas Bhachoo Schrodinger Senior Applications Scientist

Today's Protocol

Your Files for Today

• 4 main directories

Name *	Date modified	Туре	Size
J Cheminformatics	02/09/2013 10:25	File folder	
Conformational_Searching	03/09/2013 22:01	File folder	
Jugand_Preparation	03/09/2013 22:00	File folder	
Wirtual_Screening	03/09/2013 21:57	File folder	
🕙 Schrodinger-SBVS-Main-2103.ppt	03/09/2013 21:50	Microsoft Office Po	8,414 KB
Schrodinger-SBVS-Tutorials-2103.ppt	03/09/2013 21:55	Microsoft Office Po	460 KB

Open the latest *prjzip file for pre-generated results

– E.g. /Ligand_Preparation

Name ^	Date modified	Туре	Size	
Ligand_preparation_inputfiles	22/08/2013 10:48	File folder		
🕌 LigPrep_2013.prj	03/09/2013 22:00	File folder		
 → LigPrep_2013.prjzip	03/09/2013 22:00	Maestro Project File	36 KB	
🐻 Ligprep-2012.prjzip	09/05/2012 17:19	Maestro Project File	27 KB	

• Raw files for import are all also in each dir

Exercise 1 Fast Screening Using 2D Approaches (.../Cheminformatics)

- Create a Canvas project and import 'FXA_all_initial_data.sdf' / *ligprep.out
 - Note you may want to start from different points
 - 2D filtering > 3D preparation > 2D Filtering
 - 3D preparation > Shape filtering > 2D Filtering
- Generate molecular properties
 - Applications -> Molecular properties
- Incorporate the results
- Filter by properties using
 - Data -> Property Filter
 - Scatter plots
- Similarity Searches if you have data on known ligands
- Clustering data with different Clustering methods

Exercise 2 Preparing 3D Ligands for 3D Screening (.../Ligand preparation)

- In Maestro import a simple example of starting ligands
 - Import 2D_variations.sdf
 - In the first structure note, it has two ionisable groups, an ammonium counter ion and there are three chiral centres (two marked)
- Run LigPrep
 - Default options
 - Start and Append new entries as a new group
- Observe results in Maestro
 - Tile and label the structures to see them individually
 - In the first structure note, carboxylate is unprotonated, pyridine is both protonated and unprotonated, the variety of R/S chiralities
- In Maestro import FXA_ligprep-out.mae
 - Only import the first few ligands using the Advanced options. We do not need to see the entire file as it is very large.

Exercise 3 (.../Virtual Screening)

Preparing a PDB Structure for Virtual Screening

- Download 1FJS structures in Protein preparation wizard.
 - Extra: go to EDS (<u>http://eds.bmc.uu.se/eds/</u>) and download the CNS format map (2mFo-DFc) for 1FJS; Examine the electron density
 - Notes on electron density: do the residues ligand protein water sit in the electron density or is there an anomoloy? ...
- Prepare 1FJS
- Set up Glide grids (Applications -> Glide -> Receptor grid generation)

Exercise 4 (.../Virtual Screening) Property Mapping the Xtal Structure

- Run Sitemap for 1FJS
 - Try "Evaluate..." Tasks.
- Analyse the results. Where are the hydrophobic areas and polar areas? * Is the target druggable?
- Sitemap has been parameterized such that :

Rule of thumb	
average value:	
average value:	0.(2)
undruggable	0.031
difficult	0.871
druggable	1.108

Exercise 5 Virtual Screening: Docking and Visualising Poses

- Generate the Glide Grid for 1fjs
 - Use the fully prepared protein and co-crystralised ligand as starting point for Glide > Receptor Grid Generation
 - Define the ligand inside the Grid panel
 - Start the job (1-2 minutes)
 - '1fjs-grid-2013.zip' is the pre-generated output
- Dock the 1fjs ligand using this Grid file
 - In Glide > Ligand Docking, Settings tab > browse for the 1fjs grid file, choose SP mode
 - In Ligands tab > choose selected entry and ensure the '1fjs ligand only' is highlited in the Project Table
 - Start the job
 - 'Selfdock-1fjs-sp-pv.mae' is the pre-generated output
- Use Maestro to view the result(s)... Overlay Sitemap result!

- Using the Workspace Style toolbar is an easy way to visualize the docked poses, along with 'view poses' option with a 'right click' to the Group in the PT. While eye-balling is crucial, the SiFTS interface makes identifying key interactions easy
- Run the script on VSW results output (96 VSW 1FOR results) and analyse the interaction pattern
 - Scripts->Cheminformatics->Interaction fingerprints
- Perform Clustering, chosing the number of 'desired clusters'

Exercise 7 Understanding Extra Precision Docking, XPVisuliaser

- Do Glide 'Score in Place' with the co-crystalized ligand IFJS using XP and toggle on "Write XP descriptor information"
- Examine the XP descriptors in Applications-> Glide -> XP Visualizer (read in your *xp pv file)
 - A pre-generated file can be used "ScoreInPlace_1FJS_XP_pv.maegz"
- Use 'Help...' To understand the terms in the scoring function
- ..
- Leads to Exercise 4b

Exercise 8

Generating a Structure Based Pharmacophore for Screening

- In the PT Group **** E-PH4s****, the XP ligand can be used to generate e-Pharmacophore with Scripts->Postdocking processing-> e-Pharmacophore (< 1 min)
 - Single ligand option
 - Create hypothesis
 - Note, the input is a 'glide-dock-XP-SIP-2013-pv.maegz' pose-viewer file normally.
- Search the Phase database using Applications -> Phase -> Advanced Pharmacophore Screening(< 1 min for search)
 - Database: /Conf_database/FXA_db.phdb (latest 2013 format)
 - Choose hypothesis in workspace (or selected entry)
 - Use existing conformations
- View results in Maestro
 - Fitness is the output column
 - Use 'right click fix' on highlited row to fix the original pharmacophore in the workspace. Arrow-through results.

Exercise 9 (if you have energy!) Shape Based Searching

- Use the VDW shape of a ligand to search for molecules of a similar shape. The 1FJS xtal ligand is the template.
- Applications > Shape Screening...
 - Use Shape query from workspace
 - Generate conformations during search
 - Drop-down options give you more stringency in addition to shape
 - "Shape sim" is the output column
 - View results in Maestro as before

Use shape que Shape query fi	ry from: Worl	kspace	Brow
Screen structur	es in: File		► Remote da
File name:			Bro
Generate c Existing confor	onformers mers: © Disca	ard C Keep ers: 100	
Maximum numb		LID: 1100	
Maximum numb	10	conformers per rota	atable bond
Maximum numb Retain up to Amide bonds:	10 Vary conforma	conformers per rota	atable bond

Summary

- Virtual screening needs careful planning and preparation
- Post-process the results using different tools and re-score, rerank
- Products and tools that have been discussed today:
 - PrimeX, Prime, Macromodel, Sitemap, Glide, Epik, Canvas, Phase, *Prime MM-GBSA*, Interaction fingerprint, Spectral clustering, *Strain rescore*, Pose filter, e-Pharmacophore

Thanks to the Organisers Thanks to the Audience !

Help post workshop

- Contact <u>help@schrodinger.com</u>
- Your account manager @ schrodinger.com
- Resources on <u>www.schrodinger.com</u>
 - Videos
 - Seminars
 - Publications
 - Datasets

