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    Commensalism and disease in humans 

  Candida albicans  is unique among major 
pathogenic fungi in that it is intimately 
associated with human hosts ( 1 ). Pri-
mary infection with  C. albicans  occurs 
from acquisition of maternal fl ora in 
the perinatal period and is followed by 
a state of colonization, which evolves 
into a state of commensalism, except 
in rare cases of neonatal candidiasis ( 2 ).  
The state of commensalism, which does 
not result in damage to the host, is es-
tablished as a result of host homeostasis, 
physiology, and development of the 
immune system ( 3 ,  4 ). Alterations in 
the immune status of the host or anti-
biotic-mediated disruption of bacterial 
microbiota can trigger a change from 
commensalism to colonization and/or 
disease — states that diff er by the amount 
of host damage incurred ( Fig. 1 A ) ( 2 ). 
Because the microorganism remains 
the same, and the presence of  C. albicans  
in tissues of immunocompetent indi-
viduals with intact mucosal surfaces 
and microbiota is not usually associated 
with infl ammation or damage, the tran-
sition between commensalism and 
disease is almost certainly caused by the 
immune response. However, when in-
fl ammation and/or damage occur, re-
sistance to disease is associated with the 
presence of immune eff ector cells that 
kill the fungus and clear infection ( 5 ). 

Patients with impaired cell-mediated 
immunity, including those with 
advanced HIV infection, are highly 
susceptible to OPC. On page 299
of this issue, Conti et al. show that de-
fense against OPC is more dependent 
on Th17- than Th-1–type immunity ( 6 ). 
In this Commentary, we discuss this 
fi nding in light of unanswered ques-
tions about the pathogenesis of HIV-
associated OPC. 

 Mouse models of candidiasis 

and relevance to human OPC 

 Mouse models of candidiasis, including 
models of OPC, vaginitis, and dissemi-
nated disease, have been invaluable in 
advancing our understanding of the 
immune response to  C. albicans . How-
ever, because the relationship between 
humans and  C. albicans  is unique, animal 
models do not fully recapitulate the 
human disease. Consequently, obser-
vations from animal models must be 
viewed in light of several important 
limitations. 

 First, mice do not have  C. albicans  
among their commensal fl ora. Thus, 
murine infection with  C. albicans  is a 
de novo event that generates an acute 
immune response in a naive host. And 
inducing disease in mice requires inoc-
ulation with large doses of the fungus 
(typically 10 5 – 7  yeasts), which is entirely 
diff erent from the scenario in humans, 
where  C. albicans  is part of the normal 
fl ora. Hence, early snapshots of the 
mouse immune response to  C. albicans  

most likely refl ect an acute response, 
which is unlikely to occur in humans, 
in whom candidiasis occurs in a setting 
of prior infection/immunity. Although 
the number of organisms required to 
cause disease in humans is not known, 
human disease most likely refl ects an 
inability to control increased fungal 
growth in a particular tissue rather than 
a sudden high-dose challenge ( 1 ). The 
cell type(s) that respond to a primary 
infection, and those that respond after a 
disturbance in commensalism, may or 
may not be the same. 

 In mice, Th17 responses have been 
implicated in mucosal immunity against 
fungal and bacterial infections in the 
lungs and gastrointestinal tract ( 7, 8 ). 
In a mouse model of systemic candi-
diasis, IL-17 protected against infection 
by enhancing neutrophil recruitment 
( 9 ), whereas in gastric candidiasis, 
IL-17 – induced neutrophil activation 
caused excessive infl ammation ( 10 ). 
Hence, the outcome of Th17 responses 
to  C. albicans  depends on the model, 
tissue, and/or microbe, suggesting 
that the link between Th17 immunity 
and resistance to OPC, as suggested by 
Conti et al., may not be completely 
straightforward. 

 The morphological state of  C. albi-
cans  cells could also infl uence whether 
a Th1- or Th17-type immune response 
dominates in mouse models of candi-
diasis. Evidence for this possibility 
is suggested by in vitro studies with 
human cells showing that  C. albicans  
hyphae induced the production of 
IL-23, a cytokine that drives the ex-
pansion and function of Th17 cells, 
whereas yeasts induced the production 
of IL-12, the signature inducer of Th1 
immunity ( 11 ). Although comparable 
evidence in mice is not available, this 
human precedent suggests that the state 
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inadequate Th1 response ( 14, 15 ). 
However, the identifi cation of the 
Th17 lineage opens up new avenues of 
investigation and provides an opportu-
nity to dissect CD4 +  T cell responses 
with greater precision. 

 In their study, Conti et al. compared 
the susceptibility to OPC in mice with 
impaired Th1 and/or Th17 responses. 
They found that fungal infections of the 
tongue were less severe in mice lacking 
IL-12p35 than in mice lacking IL-23p19, 
suggesting that Th17 responses play 
central role in control of infection. 
Compared with wild-type mice, how-
ever, the fungal burden in both IL-
12p35 –  and IL-23p19 – defi cient mice 
was substantially higher (greater than 
three logs), demonstrating that the 
absence of either Th1 or Th17 cells 
compromised the ability of the mice to 
limit fungal growth ( Fig. 1 B ), albeit to 
a lesser extent than observed when mice 
were immunosuppressed with cortisone.  

 Consistent with the known ability 
of the Th17 response to induce neutro-
phil recruitment, more neutrophils 
were recruited into the oral cavity 
in wild-type and relatively resistant 
IL-12p35 – defi cient mice than in the 
more susceptible IL-23p19 – defi cient 
mice. This fi nding links neutrophil 
recruitment to IL-17/Th17 and fungal 
clearance. However, because more neu-
trophils were recruited in IL-12p35 –
 defi cient than in wild-type mice, and 
these mice had higher fungal burdens, 
neutrophil depletion studies in IL-12p35 –
 defi cient mice might help dissect the 
relative role of neutrophils in fungal 
clearance versus infl ammation.

  As mentioned, yeasts and hyphae 
preferentially induce human cells to pro-
duce IL-12 and IL-23, respectively ( 11 ). 
Given that large numbers of yeasts are 
used to induce infection in most mu-
rine models of candidiasis, including 
the study by Conti et al., Th1-mediated 
candidacidal mechanisms could domi-
nate soon after infection, with Th17-
mediated control coming into play 
after the yeasts germinate into hyphae. 
Because the tissue response to OPC in 
wild-type mice was characterized by 
more neutrophils and a lower fungal 
burden than in either IL-12p35 –  or 

detrimental eff ects of Th1-type immu-
nity have been observed in infections 
in which Th1 cells were thought to 
be protective ( 10 ), and in certain mod-
els of Th1-driven autoimmunity, mice 
lacking IL-12 remained susceptible ( 13 ). 
Based on the Th1/Th2 paradigm and 
the well-known association between 
OPC and immunodefi ciency in human 
and mouse studies, the risk for OPC 
has been thought to stem from an 

of the fungus infl uences the  polarization 
of the CD4 +  T cell response. 

 Helper T cell subsets 

and resistance to OPC 

 Until the identifi cation of Th17 cells in 
2005 ( 12 ), only two subsets of CD4 +  
Th cells were known: Th1 and Th2. 
The Th1/Th2 paradigm has largely 
been accepted and upheld, despite ex-
ceptions to the Th1/Th2 rule. Notably, 

  Figure 1.   Schematic representation of the states of infection with  C. albicans  in humans 

and mice.  (A) In humans, infection with  C. albicans  occurs during the perinatal period and likely 

refl ects a small fungal inoculum. A period of colonization is followed by a state of commensalism. 

Neither colonization nor commensalism result in suffi cient host damage to affect homeostasis such 

that it translates into disease (above dotted line), although impaired immunity or changes in micro-

fl ora can lead to a change in this balance, leading to disease. Host damage can be caused directly by 

the fungus and/or by the resulting infl ammatory response (B) In mice, infection is induced experi-

mentally with a large fungal inoculum. The inoculum used by Conti et al. did not cause disease in 

normal mice, but induced host damage and disease in mice lacking IL-12p35 (impaired Th1 response) 

and more severe damage/disease in mice lacking IL-17p19 (impaired Th17 response).   
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link between HIV infection and re-
duced IL-17 expression suggests the 
possibility of divergent roles for IL-17 
in the pathogenesis of HIV-associated 
OPC. In early HIV infection, when 
Th17 cells are more prevalent, IL-17 
signaling could provide protection 
against OPC by attracting neutrophils. 
In some instances, however, excessive 
IL-17 – mediated infl ammation could be 
detrimental, particularly if Th1 immu-
nity is impaired. Alternatively, deple-
tion of IL-17 – producing CD4 +  T cells 
from the gastrointestinal tract or during 
chronic HIV infection could be associ-
ated with a higher mucosal fungal bur-
den, including in the oral cavity. 

 Ultimately, the balance between 
Th1 and Th17 immunity could infl u-
ence the balance between infl ammation 
and fungal clearance and could deter-
mine whether OPC develops ( 10, 16 ). 
The same concept may apply to vaginal 
candidiasis. Several studies have dem-
onstrated that vaginal colonization with 
 C. albicans  is more prevalent in HIV-
infected women than in HIV-unin-
fected women and that higher viral 
loads are associated with increased 
colonization ( 31 – 34 ). In most studies, 
however, neither disease nor disease 
severity is increased in the setting of 
HIV infection, and disease does not 
correlate with CD4 +  T cell levels ( 31, 
32, 35 ), suggesting that other factors 
contribute more to disease pathogenesis 
and severity than defects in CD4 +  T cell 
responses ( 36 ). Diff erences in immune 
control of  C. albicans  proliferation and/
or infl ammation-mediated host damage 
are likely to diff er in the oral and vagi-
nal milieus, which have markedly 
diff erent microbiota. For example, in 
the vagina, local control of bacteria is 
aff ected primarily by innate immunity, 
including epithelial cells, and by the 
fungal-inhibiting eff ects of the bacterial 
fl ora, whereas adaptive immunity has a 
less prominent role ( 36 ). 

 Paradigms for resistance to OPC: 

Th cell redux 

 By design, experimental models hold 
either the microbe or host constant 
while varying the other. At present, the 
degree to which mucosal damage in 

nants, phase transition, and gene ex-
pression) and/or host factors (receptors, 
cytokines/chemokines, and genetics). 
Indeed, the importance of host genetics 
in governing Th17 responses was re-
cently demonstrated by the discovery 
that mutations in  STAT3  and  IL12RB1  
impair the production of IL-17 by 
T cells ( 21 ). 

 OPC in HIV infection 

 OPC was historically recognized as 
one of the earliest manifestations of 
AIDS. Although studies of Th17 ex-
pression in the setting of HIV infec-
tion are in their infancy, the fi ndings 
of Conti et al. are provocative in light 
of longstanding questions about the 
relationship between HIV-associated 
CD4 T cell defi ciency and the patho-
genesis of OPC. CD4 +  T cells from 
HIV-infected individuals at early stages 
of infection express IL-17; however, 
in one study, CD4 +  T cells from 
chronically infected individuals, non-
progressors, and patients on highly ac-
tive antiretroviral therapy (HAART) 
produced less IL-17 ( 22 ). HAART 
reduces the frequency of OPC with-
out reducing fungal burden ( 23 ), and 
the development of OPC in patients 
receiving HAART has been linked to 
a failure of immune reconstitution 
( 24, 25 ). On the other hand, oral candi-
diasis has been observed in association 
with immune reconstitution ( 26, 27 ). 
Hence, the relationship between OPC 
and HIV-associated CD4 +  T cell levels 
is not straightforward. In mice, depletion 
of CD4 T cells alone did not increase 
experimental OPC ( 28 ). However, de-
pletion of neutrophils or macrophages 
in addition to CD4 +  T cells enhanced 
the severity of disease ( 28 ). In another 
mouse model, IL-12p40 – defi cient mice 
were susceptible to OPC, but not sys-
temic candidiasis, a fi nding that the au-
thors attributed to the ability of innate 
immune mechanisms to clear systemic 
candidiasis, but not oral candidiasis, 
which requires the generation of an 
adaptive immune response ( 29 ). 

 IL-17 – producing CD4 +  T cells 
were found to be preferentially de-
pleted from the gastrointestinal tract 
of HIV-infected individuals ( 30 ). This 

IL-23p19 – defi cient mice, Th1 and Th17 
eff ector mechanisms probably synergize 
to maximize fungal clearance and to 
minimize tissue damage that arises dur-
ing clearance. 

 Synergy between Th1 and Th17 re-
sponses occurs in other infection models. 
For example, in a mouse model of 
 Cryptococcus neoformans , IL-23 enhanced 
Th1-type immunity and fungal clearance 
( 16 ). In OPC, neutrophils might enhance 
infl ammatory pathology in IL-12p35 –
 defi cient mice, whereas their absence 
probably impairs fungal clearance in 
Th17-defi cient mice. The benefi t of 
IL-17 – induced infl ammation varies in 
diff erent experimental models ( 10, 
16-18 ). Clearly, more information is 
needed to fully understand the role that 
IL-17 – mediated infl ammation plays in 
resistance and susceptibility to OPC. 

 The mechanism by which Th17 
immunity leads to resistance to OPC 
was suggested by Conti et al. to in-
volve both IL-17 – induced neutrophil 
recruitment and direct IL-17 – induced 
antimicrobial eff ects. Indeed, the 
expression of Th17-inducible genes, 
including neutrophil activating fac-
tors, neutrophil-attracting CXC che-
mokines, and antimicrobial peptides, 
was greater in the oral mucosa of 
wild-type mice than of susceptible 
IL-17RA – defi cient mice. Moreover, 
saliva from wild-type mice could kill 
the fungus in vitro, whereas the kill-
ing capacity of saliva from IL-23p19 –  
and IL-17RA – defi cient mice was 
impaired. These data are consistent 
with previous studies showing that 
IL-23, in concert with IL-17, induced 
the production of antimicrobial pep-
tides, including  �  defensins, from 
mouse keratinocytes ( 19 ) and that 
patients with OPC had reduced ex-
pression of  �  defensins ( 20 ). 

 However, association is not causa-
tion, and the reported diff erences in the 
cytokines that drive Th17 expansion 
and diff erentiation in mice and humans 
suggest the need for caution in directly 
extrapolating these mouse fi ndings to 
human OPC. The ability of Th17-po-
larized cells to trigger the production of 
 �  defensins in OPC could be a function 
of microbial factors (antigenic determi-
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that is likely to fuel new hypotheses and 
experimental approaches that could 
help unravel this mystery. 
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