IAI Accepts, published online ahead of print on 14 June 2010 Infect. Immun. doi:10.1128/IAI.00111-10 Copyright © 2010, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

1	Immunomodulatory effects of serotype B glucuronoxylomannan
2	from Cryptococcus gattii correlate with polysaccharide diameter
3	Fernanda L. Fonseca ^{1 Ω} , Lilian L. Nohara ^{2 Ω} , Radames J. B. Cordero ³ , Susana Frases ⁵ , Arturo
4	Casadevall ^{3,4} , Igor C. Almeida ^{2†} , Leonardo Nimrichter ^{1†} and Marcio L. Rodrigues ^{1*†}
5	
6	¹ Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de
7	Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ 21941-902, Brazil;
8	² Border Biomedical Research Center, Department of Biological Sciences, University
9	of Texas at El Paso, El Paso, TX 79968, USA; Departments of ³ Medicine and
10	⁴ Department of Microbiology and Immunology, Albert Einstein College of Medicine,
11	1300 Morris Park Avenue, Bronx, New York 10461, USA; ⁵ Laboratório de
12	Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade
13	Industrial, Rio de Janeiro, RJ 25250-020, Brazil.
14	
15	(*) Corresponding author. Mailing address: Avenida Carlos Chagas Filho 373, CCS,
16	Bloco I. Instituto de Microbiologia, UFRJ. Rio de Janeiro, RJ, Brasil, 21941-902.
17	Phone 55 21 2598 3035; Fax 55 21 2560 8344. Email: marcio@micro.ufrj.br.
18	
19	$^{\Omega}$ FLF and LLN contributed equally to this work.
20	[†] ICA, LN and MLR share senior authorship on this article.

- 21
- 22

23 Abstract

24	Glucuronoxylomannan (GXM), the major capsular component in the Cryptococcus
25	complex, interacts with the immune system in multiple ways, which include activation
26	of Toll-like receptors (TLRs) and modulation of nitric oxide (NO) production by
27	phagocytes. In this study, we analyzed several structural parameters of GXM samples
28	from C. neoformans (serotypes A and D) and C. gattii (serotypes B and C) and
29	correlated them with the production of NO by phagocytes and activation of TLRs.
30	GXM fractions were differentially recognized by TLR2/1 and TLR2/6 heterodimers
31	expressed on TLR-transfected HEK293A cells. Higher NF-KB luciferase reporter
32	activity induced by GXM was observed in cells expressing TLR2/1 than in cells
33	transfected with TLR2/6 constructs. A serotype B GXM from C. gattii was the most
34	effective polysaccharide fraction activating the TLR-mediated response. This serotype
35	B polysaccharide, which was also highly efficient in eliciting the production of NO by
36	macrophages, was similar to the other GXM samples in monosaccharide composition,
37	zeta potential, and electrophoretic mobility. However, immunofluorescence with four
38	different monoclonal antibodies and dynamic light scattering analysis revealed that
39	the serotype B GXM showed particularities in serological reactivity and had the
40	smallest effective diameter among the GXM samples analyzed in this study.
41	Fractionation of additional serotype B GXMs followed by exposure of these fractions
42	to macrophages revealed a correlation between NO production and reduced effective
43	diameters. Our results demonstrate a great functional diversity in GXM samples from
44	different isolates and establish their ability to differentially activate cellular responses.
45	We propose that serologic properties as well as physical chemical parameters such as
46	the diameter of polysaccharide molecules may potentially influence the inflammatory

- 47 response against *Cryptococcus* spp. and may contribute to the differences in
- 48 granulomatous inflammation between cryptococcal species.

49 Introduction

51	Cryptococcus neoformans and C. gattii are the etiologic agents of the human
52	and animal fungal disease cryptococcosis. Infection is usually acquired by inhalation
53	of environmental basidiospores or desiccated yeasts. Cryptococcal disease in humans
54	can involve every tissue, including cutaneous and pulmonary sites, but the most
55	serious manifestation is central nervous system involvement with
56	meningoencephalitis (43). Despite the similarities of the clinical syndromes in
57	cryptococcosis caused by C. neoformans and C. gattii, these species differ in the types
58	of host where they cause disease. While C. neoformans preferentially causes disease
59	in immunosuppressed patients, C. gattii-related disease is relatively common in
60	immunocompetent individuals (33, 43, 48). Mortality rates are still high in different
61	regions of the globe and the current therapeutic options are inefficient (1). No
62	vaccines are available for the prevention of cryptococcosis.
63	Glucuronoxylomannan (GXM) is the major component of the polysaccharide
64	capsule, which is the main virulence factor of Cryptococcus species (30). GXM is an
65	anionic polysaccharide consisting of a α 1-3 linked mannan that is O-acetylated at the
66	carbon 6 of some of the mannosyl units and substituted with β 1,2 glucuronyl and β 1,2
67	/ β 1,4 xylosyl residues (9). The polysaccharide is a capsular component of
68	Cryptococcus species that is also abundant in its soluble form in culture fluids and
69	infected tissues (31). Secreted and surface-associated GXM are believed to modulate
70	the immune response during cryptococcosis through multiple mechanisms (35). In
71	addition, administration of monoclonal antibodies against GXM can modify the
72	course of experimental cryptococcosis by prolonging host survival (3). Four serotypes
73	of GXM (A–D) have been defined by serological reactions. This classification divides

74	pathogenic Cryptococcus species with specific serotypes, such that C. gattii consists
75	of serotypes B and C isolates while C. neoformans varieties grubii and neoformans
76	correspond to serotypes A and D, respectively (23, 43). Most studies on the
77	immunological functions of GXM have focused on the polysaccharide fractions from
78	serotype A C. neoformans isolates. Although it is generally assumed that the
79	immunological properties observed for the serotype A polysaccharide are applicable
80	to the other serological groups, this common assumption may not be correct given
81	major structural differences among the four major serotypes.
82	The ability of GXM to activate the innate immune response was previously
83	reported in several studies (34, 46, 52, 53). Serotype A GXM was reported to
84	modulate the production of nitric oxide (NO) by phagocytes (5). In addition, GXM
85	activates Toll-like receptor (TLR) 4-mediated intracellular signaling (46), but the
86	contribution of this event to the global innate response against C. neoformans
87	infections is uncertain (2, 39). GXM can also interact with TLR2 (46), which is
88	believed to influence the response to cryptococcal infection (53). TLR2 recognizes a
89	diverse set of pathogen-associated molecular patterns, which requires
90	heterodimerization with TLR 1 or 6 (14, 17, 22, 29, 50). The roles of TLR1 or TLR6
91	in the recognition of GXM by TLR2 have not been investigated yet.
92	In this study, we correlated the structural and physical chemical properties of
93	five GXM samples with their ability to stimulate NO production by macrophages and
94	to activate nuclear factor κB (NF- κB) in cells expressing either TLR2/TLR1 or
95	TLR2/TLR6. Our results demonstrate that a serotype B GXM sample is particularly
96	efficient in activating these cellular responses. These immunomodulatory properties
97	correlate with specific serologic properties and to a reduced diameter of
98	polysaccharide molecules.

99 Material and methods

101	Fungal strains. Cryptococcal isolates used in this study were selected from the
102	culture collection available in our laboratory. Strains that had previously been more
103	extensively characterized according to their phenotypic characteristics, such as
104	capsule expression, serotype, growth rate and biochemical properties (6), were used
105	for structural and immunological assays. These samples included strains T_1444 ,
106	HEC3393 (serotype A, clinical isolates) and ATCC28938 (serotype D, obtained from
107	the American Type Culture Collection, Manassas, VA) of C. neoformans and
108	CN23/10.993 (serotype B, environmental isolate) and HEC40143 (serotype C,
109	environmental isolate) strains of C. gattii. Additional serotype B strains were included
110	in this study based on the results obtained during structural/immunological
111	investigations. These isolates comprised the well characterized strain R265 (19) and
112	strain ATCC56990 (American Type Culture Collection). Stock cultures were
113	maintained in Sabouraud dextrose agar under mineral oil and kept at 4°C.
114	
115	GXM purification. GXM was isolated as previously described by our group (40).
116	Briefly, C. neoformans and C. gattii cells (4 x 10^9 cells) were suspended in 100 ml of
117	a minimal medium composed of glucose (15 mM), MgSO ₄ (10 mM), KH ₂ PO ₄ (29.4
118	mM), glycine (13 mM), and thiamine-HCl (3 μ M); pH 5.5. For all experiments we
119	used LPS-free water and glassware. This suspension was then transferred to a 1000-
120	ml Erlenmeyer flask and supplemented with 300 ml of the same medium. Fungal cells
121	were cultivated for four days at room temperature, with shaking and separated from
122	culture supernatants by centrifugation at 4,000 g (15 min, 4° C). The supernatant fluids
123	were collected and again centrifuged at 15,000 g (15 min, 4° C), to remove smaller

124	debris. The pellets were discarded and the resulting supernatant was concentrated
125	approximately 20-fold using an Amicon (Millipore, Danvers, MA) ultrafiltration cell
126	(cutoff = 100 kDa, total capacity of 200 ml) with stirring and Biomax
127	polyether sulfone ultrafiltration discs (63.5 mm). Nitrogen (N_2) stream was used as the
128	pressure gas. After supernatant concentration, the viscous layer formed was collected
129	with a cell scraper and transferred to graduated plastic tubes for measurement of gel
130	volumes. The procedure was repeated at least three times to ascertain average
131	volumes. Alternatively, the supernatant fraction passed through the 100 kDa
132	membrane was again concentrated using a 10 kDa filtration disc. The viscous layer
133	was again collected and used for structural and functional determinations.
134	
135	ELISA for GXM quantification. The concentration of GXM in supernatants and
136	concentrated films was determined by capture ELISA, as previously described (4).
137	Briefly, 96-well polystyrene plates were coated with a goat anti-mouse IgM. After
138	removal of unbound antibodies, a solution of mAb 12A1, an IgM mAb with
139	specificity for GXM, was added to the plate, and this step was followed by blocking
140	with 1% bovine serum albumin. Supernatants in different dilutions or purified GXM
141	were added to the wells and the plates were incubated for 1 h at 37°C. The plates were
142	then washed five times with a solution of tris-buffered saline (TBS) supplemented
143	with 0.1% Tween 20, followed by incubation with mAb 18B7 for 1 h. This antibody,
144	is a well characterized IgG1 that protects mice against lethal challenges with C .
145	neoformans and binds to an epitope found in GXM from serotypes A, B, C and D (3).
146	The plate was again washed and incubated with an alkaline phosphatase-conjugated
147	goat anti-mouse IgG1 for 1 h. Reactions were developed after the addition of p -
148	nitrophenyl phosphate disodium hexahydrate, followed by measuring absorbance at

152	Monosaccharide analysis. Carbohydrate composition analysis was performed by gas
153	chromatography-mass spectrometry (GC-MS) analysis of the per-O-trimethylsilyl
154	(TMS) derivatized monosaccharides from the polysaccharide films, according to the
155	methodology described by Merkle and Poppe (32). Methyl glycosides were first
156	prepared from the dry sample (0.3 mg) by methanolysis in methanol-1 M HCl at 80°C
157	(18-22 h). The sample was then per-O-trimethylsilylated by treatment with Tri-Sil
158	(Pierce) at 80°C (0.5 h). GC-MS analysis of the per-O-TMS derivatives was
159	performed on an HP 5890 gas-chromatographer interfaced to a 5970 MSD mass
160	spectrometer, using a Supelco DB-1 fused-silica capillary column (30 m x 0.25 mm
161	ID). Carbohydrate standards used were arabinose, rhamnose, fucose, xylose,
162	glucuronic acid, galacturonic acid, mannose, galactose, glucose, mannitol, dulcitol,
163	and sorbitol.
164	
165	Transient transfection with TLRs. TLR constructs (16) as well as the β -actin
166	Renilla luciferase (49) and the reporter ELAM-1-firefly luciferase (45) constructs
167	were kindly provided by Dr. Richard Darveau (University of Washington, Seattle,

168 WA). All plasmids used in the transfections were purified using the EndoFree Plasmid

169 Purification Maxi Kit (Qiagen, Valencia, CA) following the manufacturer's

170 instructions. HEK293A cells (ATCC, Manassas, VA) were cultured in high glucose

171 Dulbecco's Modified Eagle Medium (DMEM) (Sigma-Aldrich, St. Louis, MO)

172 supplemented with 10% heat-inactivated fetal bovine serum (FBS) (HyClone, Logan,

173 UT) and the confluent monolayer harvested by treatment with trypsin/EDTA (Sigma-

174 Aldrich, St. Louis, MO). Cells were seeded in 12-well plates the day before 175 transfection. HEK293A cells were transiently cotransfected with plasmids encoding 176 mouse TLR2 and TLR1 or TLR2 and TLR6 together with the reporter construct 177 ELAM-1-firefly luciferase and β -actin *Renilla* luciferase using Lipofectamine 2000 178 (Invitrogen, Carlsbad, CA) according to the manufacturer's recommendations. Total 179 DNA per well was normalized to $2 \mu g$ by adding empty vector. On the following day, 180 the transfected cells were plated in 96-well plates. 181 182 Luciferase reporter assays for NF-KB activation. Forty-eight hours after 183 transfection, cells were stimulated with purified GXM (1-100 μ g/ml) for 4 h in 184 DMEM containing 10% FBS. Controls for TLR activation included stimulation of 185 cells with ultra pure lipopolysaccharide (LPS) from E. coli 0111:B4 strain (Invivogen, 186 San Diego, CA), Pam₃Cys-SKKKK (P3C) or FSL-1 (EMC Microcollections, 187 Tübingen, Germany). Then, cells were washed once in phosphate buffered saline 188 (PBS) and lysed in Passive Lysis Buffer (Promega, Madison, WI). The luciferase 189 activity was measured using the Dual-Luciferase Reporter Assay System (Promega, 190 Madison, WI) according to the manufacturer's instructions. The relative light-units 191 (RLU) were quantitated using a Luminoskan luminometer. NF-KB activation is 192 expressed as the ratio of NF-κB-dependent firefly luciferase activity to β-actin-193 dependent Renilla luciferase activity (16). The results are shown as the means and 194 standard deviations of values for triplicate wells. 195 196 Nitric oxide production by phagocytes. The murine macrophage-like cell line RAW 197

198 supplemented with10% fetal calf serum (FCS), 2 mM L-glutamine, 1 mM sodium

264.7 (ATCC) was cultivated under LPS-free conditions in complete DMEM

199	pyruvate, 10 mg ml/ml gentamicin, MEM non-essential amino acids (Gibco-
200	Invitrogen 11360), 10 mM HEPES and 50 mM 2- beta-mercaptoethanol, at 37 $^{\circ}\mathrm{C}$ in a
201	7.5% CO ₂ atmosphere. Murine cells were washed twice in serum-free DMEM and
202	incubated in fresh medium supplemented with varying concentrations of GXM (1-100
203	μ g/ml) for 16 h at 37°C (7.5% CO ₂ atmosphere). As a positive control, macrophages
204	were stimulated with 1 μ g/ml LPS. Supernatants were then collected and assayed for
205	NO production by the method of Griess (15). Negative controls consisted of
206	supernatants of RAW cells cultivated in medium containing no GXM. All
207	experiments were performed in triplicate sets.
208	
209	Immunofluorescence for GXM detection. Antibodies to GXM used in this assay
210	included immunoglobulins (Ig) G and M. MAbs 12A1 and 13F1 are two clonally
211	related IgMs that differ in fine specificity and protective efficacy (37, 38). MAb 12A1
212	is protective and produces annular immunofluorescence (IF) on serotype D C.
213	neoformans, while MAb 13F1 is not protective and produces punctate IF. MAb 2D10
214	(IgM) is also protective in a murine model of cryptococcosis. This antibody reacts
215	with epitopes found through the cell wall and capsule of a serotype D strain of C .
216	neoformans (13). MAb 18B7 is a protective IgG1 that has been tested as a therapeutic
217	antibody in animals and humans (3, 24). This antibody reacts with all GXM serotypes.
218	C. neoformans cells (10^6) were fixed with 4% paraformaldehyde. The cells were
219	further blocked for 1 h in PBS-BSA and incubated with the mAbs described above (1
220	μ g / ml) for 1 h at room temperature, followed by fluorescein isothiocyanate (FITC)
221	labeled goat anti-mouse (IgG or IgM) antibodies (Sigma). Yeast cells were finally
222	observed with an Axioplan 2 (Zeiss, Germany) fluorescence microscope. Images were
223	acquired using a Color View SX digital camera and processed with the software

IAI Accepts published online ahead of print

224	system analySIS (Soft Image System). In control conditions mAbs were replaced by
225	isotype-matched irrelevant antibodies. Exposure times were similar for all conditions.
226	
227	Biophysical studies. Particle size and negative charge of GXM samples were inferred
228	from dynamic light scattering and zeta potential (ζ) determinations, respectively,
229	following the methods described by Frases and colleagues (11, 12). For ζ
230	determination, GXM solutions were adjusted to 1 mg/ml in water and analyzed in a
231	Zeta potential analyzer (ZetaPlus, Brookhaven Instruments Corp., Holtsville, NY).
232	Final values were obtained from the equation $\zeta = (4\pi\eta m)/D$, where <i>D</i> is the dielectric
233	constant of the medium, η is the viscosity, and <i>m</i> is the electrophoretic mobility of the
234	particle. For determination of GXM effective diameter, polysaccharide solutions were
235	prepared as described above and measured by Quasi elastic light scattering in a
236	90Plus/BI-MAS Multi Angle Particle Sizing analyzer (Brookhaven Instruments Corp.,
237	Holtsville, NY). Particle size values were calculated as described recently (12).
238	Multimodal size distribution analysis of polysaccharides was calculated from the
239	values of intensity weighted sizes obtained from the non-negatively constrained least
240	squared (NNLS) algorithm.
241	
242	Statistics. The existence of significant differences between the different systems
243	analyzed in this study was ascertained using multiple statistical tests. Efficacy of
244	TLR-mediated NF- κ B activation, NO production and correlation tests and biophysical
245	tests were statistically evaluated using Student's t test when two different groups were
246	compared, and analysis of variance for comparison of several groups. Statistical tests
247	were performed with GraphPad Prism (version 5.0).
248	

Results

250	GXM from all strains manifest aggregation characteristics. GXM aggregation
251	resulting in the production of purified gels of native polysaccharide was previously
252	demonstrated for a serotype D strain of C. neoformans (11, 40). However, it was
253	unclear whether formation of the viscous polysaccharide films was a strain-specific
254	phenomenon or a general property of cryptococcal strains. Therefore, we evaluated
255	the ability of polysaccharide from two C. neoformans var. grubii and C. gattii
256	(serotypes B and C) to form gels after concentration by ultrafiltration.
257	Supernatants were obtained from 400 ml-cultures containing an initial
258	inoculum of 4 x 10^9 cells. The final number of cells in each culture varied according
259	to the growth rate of each strain (not shown). Supernatant concentration by
260	ultrafiltration led to the deposition of viscous films on filters for all isolates tested.
261	The volumes of the films were normalized to the final cell numbers of each culture.
262	This procedure was repeated at least three times for each strain and different average
263	values of polysaccharide volume were generated (Figure 1A). Next, we analyzed the
264	ability of each isolate to produce extracellular GXM, normalizing the polysaccharide
265	concentration found by ELISA to the final cell number in the culture. The profile of
266	GXM production by each strain, determined by ELISA (Figure 1B), resembled very
267	closely that observed for gel formation in the corresponding supernatant. In fact,
268	GXM concentrations in supernatants and gel formation were correlated ($R^2 = 0.7390$;
269	P = 0.0014), as demonstrated in Figure 1C.
270	The sugar composition of each polysaccharide fraction was analyzed by GC-
271	MS (Figure 1D). After methanolysis of the polysaccharides and per-O-
272	trimethylsilylation of the corresponding products, the resulting monosaccharides were
273	initially identified by their retention times relative to standards, followed by structural

274 authentication using MS/MS (not shown). All polysaccharide samples tested revealed 275 xylose, mannose and glucuronic acid as major constituents, consistent with the three 276 sugar components of GXM. As previously reported (10, 11), galactose was a trace 277 component of all samples (data not shown). The levels of each GXM building unit 278 varied in polysaccharides from each isolate (Figure 1D), as normally observed during 279 analysis of different GXM samples. Strains HEC3393 (serotype A) and HEC40143 280 (serotype C) contained particularly high proportions of xylose, while strains T_1444 281 (serotype A), CN23/10993 (serotype B) and ATCC28938 (serotype D) had mannose 282 as their major monosaccharide constituent. 283

284 NF-κB activation in cells expressing TLR2/1 or TLR2/6 heterodimer in response 285 to GXM. HEK293A cells expressing either TLR2/1 or TLR2/6 were stimulated with 286 the control molecules LPS, P3C, and FSL-1 or with five different GXM fractions 287 obtained from C. neoformans and C. gattii (Figure 2). Transfected cells showed 288 efficient NF- κ B activation in response to the synthetic triacylated lipopeptide P3C and 289 to the synthetic diacylated lipopeptide FSL-1, which were used as positive controls for 290 TLR2/1 and TLR2/6 activation, respectively (21). As expected, TLR2/6- or TLR2/1-291 transfected cells responded very poorly to LPS, the classic TLR4 ligand (18). Also, 292 HEK293A cells transfected with the reporter construct and plasmids containing no 293 TLR-coding sequences (vector) were unresponsive in all cases. All polysaccharide 294 samples induced a dose-dependent activation of NF- κ B (Figure 2). NF- κ B activation 295 by GXM was always more efficient in cells transfected with the TLR2/1 constructs. 296 Translocation of NF-KB in GXM-treated cells was also more efficient in cells 297 expressing TLR2/1 than in cells transfected with plasmids coding for TLR4/CD14

300	A comparative analysis of the ability of each GXM sample to activate TLR-
301	mediated cellular responses revealed unexpected differences. Although all
302	polysaccharide fractions had the capacity to activate NF- κ B in either TLR2/1- or
303	TLR2/6-expressing cells at the concentration of 100 µg/ml, a C. gattii polysaccharide
304	sample (serotype B) was significantly more efficient at activating NF- κ B than all
305	others (P <0.0001), with strong signals apparent at 1 and 10 µg/ml (Figure 3). At 1
306	μ g/ml, NF- κ B activation mediated by the serotype B GXM was at least 10-fold more
307	efficient than all others for TLR2/1-expressing cells and 6-fold higher for TLR2/6-
308	expressing cells. At 10 μ g/ml, the serotype B sample was approximately 2-fold and 4-
309	fold more effective than the other samples in TLR2/1- and TLR2/6-expressing cells,
310	respectively.
311	
312	NO production in response to GXM stimulation. The GXM samples used for TLR
313	activation were also tested for their ability to stimulate the production of NO by
314	macrophage-like cells. Exposure of RAW 264.7 cells to GXM from C. neoformans
315	cultures resulted in the production of NO at the background level (Figure 4).

316 Treatment of the phagocytes with C. gattii GXM, however, resulted in a dose-

317 dependent production of NO. As observed in TLR-based assays, the GXM sample

from strain CN23/10993 was the most effective polysaccharide fraction in elicitingNO production.

320

321 Structural and serological properties of GXM from *C. neoformans* and *C. gattii*.

322 The differences in the TLR-activating ability of the various GXM samples led us to

323	investigate the antigenic and physical properties of this polysaccharide set in more
324	detail. The differences in the monosaccharide composition in each sample were not
325	correlated with the ability of GXM to activate cellular responses, since polysaccharide
326	fractions with very similar compositions (strains CN23/10993 and ATCC28938)
327	manifested different efficacies in NO and TLR2/1- and TLR2/6-mediated NF- κB
328	activation (Figures 1-4).
329	The negative charge of GXM is an important determinant of function for the
330	capsular polysaccharide in C. neoformans (40, 41). Consequently, we determined the
331	zeta potential of the GXM from each C. neoformans and C. gattii isolates and these
332	were similar (Table 1). The electrophoretic mobility of each GXM preparation was
333	also similar and strictly correlated with zeta potential values ($r^2 = 0.9992$, $P < 0.0001$).
334	These results therefore suggested that polysaccharide charge did not affect activation
335	of NO production and TLR-mediated cellular responses by GXM.
336	Differences in GXM structure and functions can correlate with reactivity with
337	monoclonal antibodies (42), which led us to evaluate whether the functional
338	discrepancies observed in Figures 2-4 would be related with specific serological
339	patterns (Figure 5). Cells from each of the five C. neoformans strains were similarly
340	recognized by mAb 18B7, as demonstrated by immunofluorescence analysis. For all
341	strains, there was comparable intensity and the binding pattern was annular. MAbs
342	2D10, 12A1 and 13F1 produced punctate patterns of reactivity with similar intensities
343	after incubation with strains T_1444 , HEC3393, HEC40143 and ATCC28938. When
344	strain CN23/10993 was used, however, very strong serologic reactions were observed
345	with mAb 12A1. In contrast, these cells were not recognized by mAb 13F1.
346	

347	GXM effective diameter. Epitope accessibility in GXM may vary according to the
348	diameter of the molecule (11). In addition, polysaccharide size is a parameter known
349	to influence activation of TLR2-mediated innate responses (26). We therefore
350	investigated the relationship between NF- κ B activation and GXM effective diameter
351	as measured by dynamic light scattering (Figure 6). The polysaccharide molecules
352	with the largest diameters came from $% T_{1}^{1}$ isolates T_{1}^{1} and $ATCC28938$ (serotypes A
353	and D, respectively). GXM from strains HEC3393 and HEC40143 (serotypes A and
354	C, respectively) showed smaller diameter values, which were still higher than that
355	obtained for the polysaccharide isolated from strain CN23/10993 (serotype B). All
356	strains produced polysaccharides with diameters higher than 2 μm , except for strain
357	CN23/10993. Effective diameter determination in ten different analyses showed that
358	GXM fractions from the CN23/10993 isolate were significantly shorter (P <0.0001)
359	than any other polysaccharide. Therefore, the GXM sample containing molecules of
360	the smallest diameter was the most potent one in activating the cellular responses in
361	this study.
362	

363 Smaller GXM fractions from serotype B C. gattii strains are more effective in 364 eliciting NO production. In an attempt to establish a correlation between the 365 effective diameter of GXM samples and their ability to stimulate cellular responses, 366 we fractionated culture supernatants of different cryptococcal isolates. GXM samples 367 were isolated from different strains, including: i) T₁444, due to its ability to 368 abundantly produce extracellular polysaccharides with high-diameter (Figures 1 and 369 6), and ii) CN23/10993, which was selected based on its ability to produce GXM with 370 apparently higher immunogenicity (Figures 2-4). Two additional serotype B GXMs, 371 from strains R265 and ATCC56990, were included in this assay for comparative

373	of 10-100 kDa were obtained by supernatant filtration and the prototype assay used to
374	analyze the relationship between the size of GXM samples and their ability to
375	stimulate cellular responses was NO production by macrophages, since it includes
376	straightforward procedures and simple data interpretation.
377	Fractionation of the T_1444 supernatant revealed that the high molecular mass
378	sample (>100 kDa) induced NO production by the phagocytes more efficiently ($P <$
379	0.001) than the polysaccharide fraction in the 10-100 kDa mass range (Figure 7A). An
380	opposite pattern was observed for the C. gattii samples. All GXM fractions of lower
381	molecular masses were significantly more effective in stimulating the production of
382	NO than the high molecular weight polysaccharides ($P < 0.0001$ for all samples).
383	Again, GXM fractions from strain CN23/10993 were the most effective samples
384	inducing NO production. Measurements of polysaccharide effective diameter in these
385	fractions were performed by dynamic light scattering, which confirmed that samples
386	with higher molecular masses consisted of molecules of increased dimensions (Figure
387	7B). Analysis of serotype B GXM samples (strains CN23/10993, R265 and
388	ATCC56990) in the 10-100 kDa molecular mass range revealed a direct correlation
389	between their ability to induce NO and reduced effective diameters (Figure 7C).
390	
391	
392	

purposes. GXM fractions with molecular masses higher than 100 kDa and in the range

393 Discussion

394	Recent studies indicate that the structure of GXM and, consequently, its biological
395	functions vary according to parameters that include molecular mass and effective
396	diameter (11, 12, 40). The functional diversity in cryptococcal polysaccharides is not
397	exclusive to GXM. In fact, it has been recently described that galactoxylomannan
398	(GalXM) samples from <i>C. neoformans</i> are structurally and antigenically variable (8).
399	Therefore, establishing general functions for cryptococcal polysaccharides is
400	complex, since very different characteristics of supposedly similar samples have been
401	repeatedly observed in independent studies (8, 11, 40), that presumably reflect
402	differences in polysaccharide structure. GXM, for instance, has been classically
403	defined as deleterious to the immune system (51), although it can also activate the
404	host defense (46).
405	Fungal polysaccharides are potential candidates to activate TLR2-mediated
406	cellular responses. In <i>Histoplasma capsulatum</i> , β -glucan-induced formation of lipid
407	bodies, which are multifunctional organelles with critical roles in inflammation, was
408	inhibited in TLR2-deficient mice (47). Chitin, a cell wall structural polysaccharide,
409	has been consistently characterized as a stimulator of TLR2-dependent production of
410	IL-17 by macrophages, resulting in the induction of acute inflammation (7).
411	The ability of C. neoformans GXM to activate TLR-mediated innate responses
412	was demonstrated in a number of previous studies (2, 27, 28, 36, 39, 46, 53), but
413	comparable studies have not been carried out for C. gattii polysaccharides. TLRs and
414	the CD14 receptor function as pattern recognition receptors for GXM (27, 28, 36, 44,
415	46, 53). The binding of GXM to TLR4 was reported to result in translocation of NF-
416	κB to the nucleus in an incomplete process that does not induce activation of mitogen-
417	activated protein kinase pathways or release of TNF- α (46). TLR4 was also

418	implicated as a receptor involved in cellular uptake (34), and tissue distribution (52)
419	of GXM. However, the roles of TLR2 and other TLRs in the immune response to
420	GXM remain poorly understood. In the present study, we determined that the
421	hydrodynamic size of GXM fractions is correlated with their ability to stimulate NO
422	production by macrophages and to activate NF- κ B in a TLR2-dependent manner. In
423	fact, all GXM fractions stimulated activation of NF- κ B in HEK293A cells transiently
424	transfected with TLR2 and TLR6, or TLR2 and TLR1 constructs. This response was
425	always more intense in cells expressing the TLR2/1 association than in those
426	expressing the TLR2/6 construct. In all systems, the highest levels of NF- κB
427	activation were obtained when transfected HEK293A cells were exposed to a serotype
428	B GXM from the C. gattii strain.
429	To understand the structural characteristics responsible for NO and TLR
430	activation we evaluated several GXM parameters. The ability of GXM to induce NO
431	production and the TLR-mediated response in transfected HEK293A cells was not an
432	intra-species property nor depended on sugar composition, so other parameters were
433	evaluated. Differences in antibody reactivity can imply differences in GXM structure
434	(11), which also denote functional specificity (20). In this study we found that the
435	serologic characteristics revealed by the binding of mAbs were similar in all strains,
436	except for the C. gattii strain CN23/10993. Those cells showed strong reactivity with
437	the protective IgM 12A1, but did not react with the clonally-related, non-protective
438	mAb 13F1. This observation is consistent and reflective of the fact that mAbs 12A1
439	and 13F1 bind to different epitopes. In a recent study, it has been suggested that
440	antibody reactivity is influenced by the diameter of GXM (10), which led us to the
441	inference that the effective diameter of the polysaccharide samples used in this study
442	could also be related to the functionality of GXM.

IAI Accepts published online ahead of print

443	Immunological studies with chitin have shown that large polysaccharide
444	polymers are biologically inert, while their fragments are efficient regulators of
445	TLR2-mediated innate immune responses (7, 25, 26). Human cryptococcosis caused
446	by C. gattii is known to produce strong inflammatory responses in the lung, whereas
447	the C. neoformans varieties often trigger little or no inflammation (49). Consequently,
448	the result that serotype B GXMs were more potent activators of cellular responses
449	raises the tantalizing possibility that a correlation might exist between activation of
450	host cells and the type of granulomatous response made. In our model, the most
451	effective GXM sample in activating cellular responses had the smallest effective
452	diameter, a result that echoed previous findings with chitin (7, 25, 26). Using the
453	model of NO production by macrophages after exposure to the serotype B GXM, we
454	observed that polysaccharides with reduced dimensions induced a stronger cellular
455	response, a property that was exclusive to serotype B GXM samples. NO production
456	by macrophages is involved in both antimicrobial responses and mediation of
457	inflammation, illustrating the complex effects of the GXM on host immune function.
458	Given that our studies compared GXM preparations standardized by mass/volume and
459	that smaller fibers have lower molecular masses, it is possible that the effects
460	measured here reflect differences in the molarity of the GXM. Nevertheless, we urge
461	caution in attributing these effects to simple differences in molarity since interactions
462	between polysaccharides and their receptors are likely to involve repeating structural
463	motifs in polysaccharide molecules such that avidity considerations could be
464	dominant. Furthermore, we note that immunological studies routinely measure effects
465	using polysaccharide concentrations standardized by mass/volume and consequently
466	this approach is experimentally relevant, especially for literature comparisons.

467	The cryptococcal capsule enlarges during infection, which is essential for
468	virulence (54). A linear correlation between the effective diameter of GXM and
469	microscopic capsular diameter was recently demonstrated (12), suggesting that the
470	synthesis of high-diameter polysaccharides is essential for capsule enlargement. In our
471	model, strain CN23/10993 produced GXM molecules with the lowest values of
472	effective diameter and had the smallest capsular dimension (data not shown). The
473	combination of the ability of GXM to modulate cellular responses and the capacity of
474	C. neoformans to produce large GXMs and capsules may have a direct impact on
475	fungal virulence. C. neoformans isolates producing large GXM molecules would be
476	more efficient in producing capsules with increased dimensions, which is generally
477	associated with pathogenic potential (54). On the other hand, isolates producing
478	smaller GXMs, according to our current results, would manifest a potentially
479	enhanced ability to activate some mechanisms of the immune response. Considering
480	that the cryptococcal capsule also protects the fungus against a number of antifungal
481	mechanisms of the host, a combination of smaller GXMs and formation of a capsular
482	network with reduced dimensions would favor the host defense by multiple
483	mechanisms. We therefore suggest that synthesis of capsular structures with reduced
484	dimensions could have protean effects on the pathogenic capacity of cryptococcal
485	strains ranging from increased susceptibility to oxidative fluxes and phagocytosis, to
486	producing molecules with an enhanced ability to activate host defenses. These
487	observations suggest a mechanistic explanation for the consistent observation that
488	strains with small capsules elicit more inflammation than those with large capsules
489	(43). Furthermore, the higher NO-inducing activity associated with C. gattii
490	polysaccharides, which correlates with smaller GXM diameters, suggests an

- 491 explanation for the consistent observation of stronger granulomatous responses in
- 492 cryptococcosis caused by this species (33, 43, 48).

493 Acknowledgements.

494	MLR and LN are supported by grants from Coordenação de Aperfeiçoamento de
495	Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento
496	Científico e Tecnológico (CNPq, Brazil), Fundação de Amparo a Pesquisa do Estado
497	de São Paulo (FAPESP, Brazil) and Fundação de Amparo a Pesquisa do Estado do
498	Rio de Janeiro (FAPERJ, Brazil). AC is supported by NIH grants AI033142,
499	AI033774, AI052733, and HL059842. ICA is supported by NIH/NCRR grant
500	5G12RR008124-16A1. LLN is partially supported by the Cotton Memorial
501	Scholarship (UTEP), Good Neighbor Scholarship (UTEP), and Florence Terry
502	Griswold Scholarship-I (PARTT). RJBC is supported by the Training Program in
503	Cellular and Molecular Biology and Genetics, T32 GM007491. Carbohydrate
504	analyses were performed at the Complex Carbohydrate Research Center, University of
505	Georgia-Athens, which is supported in part by the Department of Energy-funded (DE-
506	FG-9-93ER-20097) Center for Plant and Microbial Complex Carbohydrates. TLR
507	experiments were partly carried out at the Biomolecule Analysis (BACF) and the Cell
508	Culture and High Throughput Screening Core Facilities, the Border Biomedical
509	Research Center (BBRC), UTEP, supported by NIH/NCRR grants 5G12RR008124-
510	16A1 and 3G12RR008124-16A1S1 (BACF). We thank Jorge José Jó B. Ferreira and
511	Rosana Puccia for helpful discussions and Natalia Freire for help with GXM
512	fractionation. We are also indebted to Drs Sonia Rozental and Marilene Vainstein for
513	the gifts of strains ATCC56990 and R265.
514	
515	
516	

Figures

519

520 Figure 1. Quantitative and structural analyses of GXMs from five Cryptococcus

521 isolates. GXM was isolated by formation of polysaccharide gels after concentration of

522 culture supernatants of five different isolates of *C. neoformans* and *C. gattii*. The

523 volume of gel formation in normalized cultures (A) apparently correlates with the

- 524 ability of each strain to produce and secrete GXM to the extracellular medium (B).
- 525 Results are expressed as means \pm standard deviations of three different experiments.
- 526 Correlation properties are shown in C. D. Monosaccharide composition of
- 527 polysaccharides obtained from the five different isolates of *C. neoformans* and *C.*

gattii. Monosaccharides were identified by GC-MS; the relative amount of each sugar
residue in the polysaccharides is shown as molar percentage. Serotypes are indicated
for each strain.

545 Figure 3. Comparative analysis of the efficacy of GXM samples in the activation

546 of TLR-mediated NF-κB nuclear translocation. Treatment of HEK293A cells

547 expressing either TLR2/1 (A) or TLR2/6 (B) with GXM revealed that polysaccharide

548 fractions from strain CN23/10993 were significantly more efficient than all others

549 (P<0.0001) at 1 and 10 µg/ml (asterisks). No significant differences were observed at

a higher concentration (100 μ g/ml). Strains T₁444, HEC3393, HEC40143 and

551 ATCC28938 manifested similar efficacies in activating NF-κB nuclear translocation.

- 552 Strain serotypes are indicated.
- 553

IAI Accepts published online ahead of print

558 of NO production by macrophages. Polysaccharide fractions from strain

559 CN23/10993 were significantly more efficient in induction of NO production than all

```
560 others (P<0.0001) at 1, 10 and 100 μg/ml. LPS was used as positive control of NO
```

561 production by macrophage-like cells; incubation of the phagocytes in the medium

alone (no stimulation) was the negative control. Serotypes are indicated for each

563 strain.

⁵⁶⁶ Figure 5. Reactivity of *C. neoformans* and *C. gattii* isolates with four monoclonal

⁵⁶⁸ antibodies are shown on the left. Differential interferential contrast (gray) and

569 fluorescence (red) images are shown. Overreaction of CN23/10993 cells with

570 antibody 12A1 (single asterisk) and lack of reactivity with antibody 13F1 (double

- 571 asterisks) are highlighted.
- 572

565

- 576 Figure 6. Diameter of GXM fractions of different isolates of *C. neoformans* and
- 577 *C. gattii.* Effective diameter distribution of GXM (A) and related average values (B)
- 578 are shown. Serotypes are indicated for each strain.

581 effective diameters. A. Stimulation of macrophage-like cells with the GXM fractions

582 results in differential production of NO. Asterisks denote significant differences after

583 stimulation of phagocytes with GXM fractions (P<0.0001). B. Effective diameter

584 determination of fractions obtained by sequential ultrafiltration through 100 kDa and

- 585 10 kDa cut-off filtration discs. Asterisks denote statistical significance after
- 586 comparison of the differences in effective diameter (*P*<0.0001). C. Correlation

- 587 analysis of effective diameter of serotype B GXM samples in the 10-100 kDa range
- and their ability to induce NO. Serotypes are indicated for each strain.

589 Table 1. Electronegativity of polysaccharides from five different strains of

C. neoformans and C. gattii.

590 591

Serotype	Zeta Potential (mV)	Mobility (µ/s)/(V/cm)
А	-34.50 ±0.32	-2.70±0.02
А	-33.36±0.51	-2.61±0.04
В	-33.34±0.21	-2.60±0.02
С	-38.15±0.41	-2.98±0.03
D	-34.62±0.45	-2.71±0.04
	Serotype A A B C D	Serotype Zeta Potential (mV) A -34.50 ±0.32 A -33.36±0.51 B -33.34±0.21 C -38.15±0.41 D -34.62±0.45

593 References

594 Bicanic, T., and T. S. Harrison. 2004. Cryptococcal meningitis. Br Med Bull 1. 595 72:99-118. 596 2. Biondo, C., A. Midiri, L. Messina, F. Tomasello, G. Garufi, M. R. 597 Catania, M. Bombaci, C. Beninati, G. Teti, and G. Mancuso. 2005. MyD88 and 598 TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. 599 Eur J Immunol **35**:870-878. 600 3. Casadevall, A., W. Cleare, M. Feldmesser, A. Glatman-Freedman, D. L. 601 Goldman, T. R. Kozel, N. Lendvai, J. Mukherjee, L. A. Pirofski, J. Rivera, A. L. 602 Rosas, M. D. Scharff, P. Valadon, K. Westin, and Z. Zhong. 1998. 603 Characterization of a murine monoclonal antibody to Cryptococcus neoformans 604 polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents 605 Chemother **42**:1437-1446. 606 4. Casadevall, A., J. Mukherjee, and M. D. Scharff. 1992. Monoclonal 607 antibody based ELISAs for cryptococcal polysaccharide. J Immunol Methods 154:27-608 35. 609 5. Chiapello, L. S., J. L. Baronetti, A. P. Garro, M. F. Spesso, and D. T. 610 Masih. 2008. Cryptococcus neoformans glucuronoxylomannan induces macrophage 611 apoptosis mediated by nitric oxide in a caspase-independent pathway. Int Immunol 612 **20**:1527-1541. 613 Collopy-Junior, I., F. F. Esteves, L. Nimrichter, M. L. Rodrigues, C. S. 6. 614 Alviano, and J. R. Meyer-Fernandes. 2006. An ectophosphatase activity in 615 Cryptococcus neoformans. FEMS yeast research 6:1010-1017. Da Silva, C. A., D. Hartl, W. Liu, C. G. Lee, and J. A. Elias. 2008. TLR-2 616 7. 617 and IL-17A in chitin-induced macrophage activation and acute inflammation. J 618 Immunol 181:4279-4286. 619 De Jesus, M., S. K. Chow, R. J. Cordero, S. Frases, and A. Casadevall. 8. 620 Galactoxylomannans from Cryptococcus neoformans varieties neoformans and grubii 621 are structurally and antigenically variable. Eukaryotic cell. 622 9. **Doering**, **T. L.** 2000. How does Cryptococcus get its coat? Trends in 623 microbiology 8:547-553. 624 10. Fonseca, F. L., S. Frases, A. Casadevall, O. Fischman-Gompertz, L. 625 Nimrichter, and M. L. Rodrigues. 2009. Structural and functional properties of the 626 Trichosporon asahii glucuronoxylomannan. Fungal Genet Biol 46:496-505. 627 Frases, S., L. Nimrichter, N. B. Viana, A. Nakouzi, and A. Casadevall. 11. 628 2008. Cryptococcus neoformans capsular polysaccharide and exopolysaccharide 629 fractions manifest physical, chemical, and antigenic differences. Eukaryotic cell 630 7:319-327. 631 12. Frases, S., B. Pontes, L. Nimrichter, N. B. Viana, M. L. Rodrigues, and A. 632 Casadevall. 2009. Capsule of Cryptococcus neoformans grows by enlargement of 633 polysaccharide molecules. Proceedings of the National Academy of Sciences of the 634 United States of America 106:1228-1233. 635 Garcia-Rivera, J., Y. C. Chang, K. J. Kwon-Chung, and A. Casadevall. 13. 636 2004. Cryptococcus neoformans CAP59 (or Cap59p) is involved in the extracellular 637 trafficking of capsular glucuronoxylomannan. Eukaryotic cell 3:385-392. 638 14. Gautam, J. K., Ashish, L. D. Comeau, J. K. Krueger, and M. F. Smith, Jr. 639 2006. Structural and functional evidence for the role of the TLR2 DD loop in 640 TLR1/TLR2 heterodimerization and signaling. The Journal of biological chemistry **281**:30132-30142. 641

642 Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, 15. 643 and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in 644 biological fluids. Anal Biochem 126:131-138. 645 Hajjar, A. M., D. S. O'Mahony, A. Ozinsky, D. M. Underhill, A. Aderem, 16. 646 S. J. Klebanoff, and C. B. Wilson. 2001. Cutting edge: functional interactions 647 between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble 648 modulin. J Immunol 166:15-19. 649 Jin, M. S., S. E. Kim, J. Y. Heo, M. E. Lee, H. M. Kim, S. G. Paik, H. Lee, 17. 650 and J. O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by 651 binding of a tri-acylated lipopeptide. Cell 130:1071-1082. 652 18. Jin, M. S., and J. O. Lee. 2008. Structures of the toll-like receptor family and 653 its ligand complexes. Immunity 29:182-191. 654 Kidd, S. E., F. Hagen, R. L. Tscharke, M. Huynh, K. H. Bartlett, M. Fyfe, 19. 655 L. Macdougall, T. Boekhout, K. J. Kwon-Chung, and W. Meyer. 2004. A rare 656 genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver 657 Island (British Columbia, Canada). Proceedings of the National Academy of Sciences 658 of the United States of America 101:17258-17263. 659 Kozel, T. R., S. M. Levitz, F. Dromer, M. A. Gates, P. Thorkildson, and G. 20. 660 **Janbon**. 2003. Antigenic and biological characteristics of mutant strains of 661 Cryptococcus neoformans lacking capsular O acetylation or xylosyl side chains. 662 Infection and immunity **71**:2868-2875. 663 Krishnegowda, G., A. M. Hajjar, J. Zhu, E. J. Douglass, S. Uematsu, S. 21. 664 Akira, A. S. Woods, and D. C. Gowda. 2005. Induction of proinflammatory 665 responses in macrophages by the glycosylphosphatidylinositols of Plasmodium 666 falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural 667 requirement, and regulation of GPI activity. J Biol Chem 280:8606-8616. 668 22. Kumar, H., T. Kawai, and S. Akira. 2009. Toll-like receptors and innate 669 immunity. Biochem Biophys Res Commun 388:621-625. 670 23. Kwon-Chung, K. J., and A. Varma. 2006. Do major species concepts 671 support one, two or more species within Cryptococcus neoformans? FEMS yeast 672 research 6:574-587. 673 Larsen, R. A., P. G. Pappas, J. Perfect, J. A. Aberg, A. Casadevall, G. A. 24. 674 Cloud, R. James, S. Filler, and W. E. Dismukes. 2005. Phase I evaluation of the 675 safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in 676 subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother 49:952-677 958. 678 25. Lee, C. G. 2009. Chitin, chitinases and chitinase-like proteins in allergic 679 inflammation and tissue remodeling. Yonsei Med J 50:22-30. 680 Lee, C. G., C. A. Da Silva, J. Y. Lee, D. Hartl, and J. A. Elias. 2008. Chitin 26. 681 regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684-689. 682 683 Levitz, S. M. 2002. Receptor-mediated recognition of Cryptococcus 27. 684 neoformans. Nippon Ishinkin Gakkai Zasshi 43:133-136. 685 Levitz, S. M. 2004. Interactions of Toll-like receptors with fungi. Microbes 28. 686 and infection / Institut Pasteur 6:1351-1355. 687 29. Liang, S., K. B. Hosur, S. Lu, H. F. Nawar, B. R. Weber, R. I. Tapping, T. 688 D. Connell, and G. Hajishengallis. 2009. Mapping of a microbial protein domain 689 involved in binding and activation of the TLR2/TLR1 heterodimer. J Immunol 690 182:2978-2985.

691 30. McClelland, E. E., P. Bernhardt, and A. Casadevall. 2005. Coping with 692 multiple virulence factors: which is most important? PLoS pathogens 1:e40. 693 McFadden, D., O. Zaragoza, and A. Casadevall. 2006. The capsular 31. 694 dynamics of Cryptococcus neoformans. Trends in microbiology 14:497-505. 695 32. Merkle, R. K., and I. Poppe. 1994. Carbohydrate composition analysis of 696 glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods in 697 enzymology 230:1-15. 698 Mitchell, D. H., T. C. Sorrell, A. M. Allworth, C. H. Heath, A. R. 33. 699 McGregor, K. Papanaoum, M. J. Richards, and T. Gottlieb. 1995. Cryptococcal 700 disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on 701 clinical manifestations and outcome. Clin Infect Dis 20:611-616. 702 Monari, C., F. Bistoni, A. Casadevall, E. Pericolini, D. Pietrella, T. R. 34. 703 Kozel, and A. Vecchiarelli. 2005. Glucuronoxylomannan, a microbial compound, 704 regulates expression of costimulatory molecules and production of cytokines in 705 macrophages. J Infect Dis 191:127-137. 706 35. Monari, C., F. Bistoni, and A. Vecchiarelli. 2006. Glucuronoxylomannan 707 exhibits potent immunosuppressive properties. FEMS yeast research 6:537-542. 708 36. Monari, C., E. Pericolini, G. Bistoni, A. Casadevall, T. R. Kozel, and A. 709 Vecchiarelli. 2005. Cryptococcus neoformans capsular glucuronoxylomannan 710 induces expression of fas ligand in macrophages. J Immunol **174**:3461-3468. 711 37. Mukherjee, J., G. Nussbaum, M. D. Scharff, and A. Casadevall. 1995. 712 Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans 713 originating from one B cell. The Journal of experimental medicine 181:405-409. 714 Mukherjee, J., M. D. Scharff, and A. Casadevall. 1992. Protective murine 38. 715 monoclonal antibodies to Cryptococcus neoformans. Infection and immunity 60:4534-716 4541. 717 39. Nakamura, K., K. Miyagi, Y. Koguchi, Y. Kinjo, K. Uezu, T. Kinjo, M. 718 Akamine, J. Fujita, I. Kawamura, M. Mitsuyama, Y. Adachi, N. Ohno, K. 719 Takeda, S. Akira, A. Miyazato, M. Kaku, and K. Kawakami. 2006. Limited 720 contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious 721 pathogen, Cryptococcus neoformans. FEMS Immunol Med Microbiol 47:148-154. 722 40. Nimrichter, L., S. Frases, L. P. Cinelli, N. B. Viana, A. Nakouzi, L. R. 723 Travassos, A. Casadevall, and M. L. Rodrigues. 2007. Self-aggregation of 724 Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent 725 cations. Eukaryotic cell 6:1400-1410. 726 Nosanchuk, J. D., and A. Casadevall. 1997. Cellular charge of Cryptococcus 41. 727 neoformans: contributions from the capsular polysaccharide, melanin, and 728 monoclonal antibody binding. Infection and immunity 65:1836-1841. 729 42. Nussbaum, G., W. Cleare, A. Casadevall, M. D. Scharff, and P. Valadon. 730 1997. Epitope location in the Cryptococcus neoformans capsule is a determinant of 731 antibody efficacy. The Journal of experimental medicine 185:685-694. 732 43. Perfect, J. R., and A. Casadevall. 2002. Cryptococcosis. Infectious disease 733 clinics of North America 16:837-874, v-vi. 734 Roeder, A., C. J. Kirschning, R. A. Rupec, M. Schaller, and H. C. 44. 735 Korting. 2004. Toll-like receptors and innate antifungal responses. Trends in 736 microbiology 12:44-49. 737 45. Schindler, U., and V. R. Baichwal. 1994. Three NF-kappa B binding sites in 738 the human E-selectin gene required for maximal tumor necrosis factor alpha-induced 739 expression. Mol Cell Biol 14:5820-5831.

- 740 46. Shoham, S., C. Huang, J. M. Chen, D. T. Golenbock, and S. M. Levitz. 741 2001. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release 742 in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 743 166:4620-4626. 744 47. Sorgi, C. A., A. Secatto, C. Fontanari, W. M. Turato, C. Belanger, A. I. de 745 Medeiros, S. Kashima, S. Marleau, D. T. Covas, P. T. Bozza, and L. H. Faccioli. 746 2009. Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation 747 through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 748 generation and role in HIV-1 infection. J Immunol 182:4025-4035. 749 Speed, B., and D. Dunt. 1995. Clinical and host differences between 48. 750 infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 21:28-751 34; discussion 35-26. 752 49. Sweetser, M. T., T. Hoey, Y. L. Sun, W. M. Weaver, G. A. Price, and C. B. 753 **Wilson**. 1998. The roles of nuclear factor of activated T cells and ying-yang 1 in 754 activation-induced expression of the interferon-gamma promoter in T cells. J Biol 755 Chem 273:34775-34783. 756 50. Triantafilou, M., F. G. Gamper, R. M. Haston, M. A. Mouratis, S. 757 Morath, T. Hartung, and K. Triantafilou. 2006. Membrane sorting of toll-like 758 receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines 759 heterotypic associations with CD36 and intracellular targeting. The Journal of 760 biological chemistry **281**:31002-31011. 761 Vecchiarelli, A. 2007. Fungal capsular polysaccharide and T-cell suppression: 51. 762 the hidden nature of poor immunogenicity. Crit Rev Immunol 27:547-557. 763 52. Yauch, L. E., M. K. Mansour, and S. M. Levitz. 2005. Receptor-mediated 764 clearance of Cryptococcus neoformans capsular polysaccharide in vivo. Infection and 765 immunity 73:8429-8432. 766 53. Yauch, L. E., M. K. Mansour, S. Shoham, J. B. Rottman, and S. M. 767 Levitz. 2004. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the 768 host response to the fungal pathogen Cryptococcus neoformans in vivo. Infection and 769 immunity 72:5373-5382. 770 54. Zaragoza, O., M. L. Rodrigues, M. De Jesus, S. Frases, E. Dadachova, and 771 **A. Casadevall**. 2009. The capsule of the fungal pathogen Cryptococcus neoformans.
- 772 Adv Appl Microbiol **68**:133-216.
- 773 774