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Multiple roles for O-glycans in Notch signalling
Shweta Varshney and Pamela Stanley

Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA

Correspondence

P. Stanley, Department of Cell Biology,
Albert Einstein College of Medicine, New
York, NY 10461, USA

Fax: (718)430 8574

Tel: (718)430 3346

E-mail: pamela.stanley@einstein.yu.edu

Notch signalling regulates a plethora of developmental processes and is also
essential for the maintenance of tissue homeostasis in adults. Therefore, fine-
tuning of Notch signalling strength needs to be tightly regulated. Of key
importance for the regulation of Notch signalling are O-fucose, O-GlcNAc
and O-glucose glycans attached to the extracellular domain of Notch recep-
tors. The EGF repeats of the Notch receptor extracellular domain harbour
consensus sites for addition of the different types of O-glycan to Ser or Thr,
which takes place in the endoplasmic reticulum. Studies from Drosophila to
mammals have demonstrated the multifaceted roles of O-glycosylation in reg-
ulating Notch signalling. O-glycosylation modulates different aspects of
Notch signalling including recognition by Notch ligands, the strength of
ligand binding, Notch receptor trafficking, stability and activation at the cell
surface. Defects in O-glycosylation of Notch receptors give rise to patholo-
gies in humans. This Review summarizes the nature of the O-glycans on
Notch receptors and their differential effects on Notch signalling.
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Notch signalling is a well-characterized, evolutionarily
conserved pathway that plays multiple roles in the regu-
lation of embryonic development, and in the mainte-
nance of tissue homeostasis. Defective Notch signalling
leads to numerous pathologies in development, and to
different adult diseases [1]. In mammals, there are four
different Notch receptors (NOTCHI to NOTCH4),
whereas Drosophila has only one homologue which is
most similar to NOTCHI1. Notch receptors are single
transmembrane glycoproteins, comprising an extracellu-
lar domain (NECD), a transmembrane region, and an
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intracellular domain (NICD) (reviewed in Ref. [2-4]).
The NECD comprises 29-36 epidermal growth factor-
like (EGF) repeats, which include Notch ligand-binding
domains. The EGF repeats are followed by the negative
regulatory region (NRR), which is composed of three
cysteine-rich Lin12 Notch repeats and a heterodimeriza-
tion domain (HD). NECD is noncovalently linked at
the HD to the N-terminal 12 amino acids of NICD that
are external to the transmembrane domain (termed
NEXT for Notch extracellular truncation [5]). NICD
and NECD are generated by furin cleavage at the S1

ADAM, a disintegrin and metalloprotease; ANK, Ankyrin repeats; AOS4, Adams-Oliver syndrome 4; C2 domain, module at the N-terminus of
Notch ligands; CHO, Chinese hamster ovary; CSL, CBF-1 suppressor of hairless-LAG1; DDD, Dowling-Degos disease; DLL, Delta-like; EGF,
epidermal growth factor-like; EOGT, EGF-domain-specific O-GIcNAc; ER, endoplasmic reticulum; ES, embryonic stem cells; Gal, galactose;
GDP-Fuc, GDP-fucose; GIlcNAc, N-acetylglucosamine; GSI, gamma-secretase inhibitor; GXYLT1, glucoside xylosyltransferase 1; GXYLT2, glu-
coside xylosyltransferase 2; HD, heterodimerization domain; HEK, human embryonic kidney; HSC, haematopoietic stem cells; HS-DDD4,
hidradenitis suppurativa-Dowling-Degos disease 4; JAG1, Jagged 1; LFNG, Lunatic fringe; LGMD2Z, limb-girdle muscular dystrophy type 2Z;
MAML, mastermind-like; MFNG, Manic fringe; NECD, Notch extracellular domain; NeuAc, N-acetylneuraminic acid; NEXT, Notch extracellu-
lar truncation; NICD, Notch intracellular domain; NRR, negative regulatory region; POFUT1, protein O-fucosyltransferase 1, POGLUT1, Pro-
tein O-glucosyltransferase 1; RAM, RBP-Jk-associated module; RFNG, Radical fringe; SCDOS3, spondylocostal dysostosis 3; Su(H),
suppressor of hairless; TAD, transcriptional activation domain; U20S, human osteosarcoma cell line; XXYLT1, xylose xylosyltransferase 1.
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site during passage through the Golgi. NICD is charac-
terized by an RBP-Jx-associated module (RAM) and
ankyrin (ANK) repeats, both of which are required for
interactions with the DNA-binding complex CBFI1-
Suppressor of Hairless—-LAG1 (CSL). Near the C-termi-
nus of Notch receptors is a PEST domain, which regu-
lates NICD degradation by the proteasome. Between
the ANK repeats and the PEST domain, NICD also
contains several nuclear localization signals, and a
domain that confers transactivation of transcriptional
repressors (TAD).

Notch signalling is mediated by short-range, cell-cell
interactions between signal-sending cells expressing
Notch ligands, and signal-receiving cells expressing
Notch receptors. Signalling strength is fine-tuned by
numerous factors, including the expression of Notch
ligands that cause cis-inhibition of Notch receptors in
signal-receiving cells, molecules involved in secretory
pathway trafficking, and the O-glycans attached to
NECD. The canonical Notch signalling pathway
involves Notch ligands Delta or Serrate (in Drosophila)
and Delta-like or Jagged (in mammals), binding to
NECD of Notch receptors and initiating two, sequen-
tial proteolytic cleavages. The first is caused by a disin-
tegrin and metalloprotease (ADAM) and occurs at the
S2 site adjacent to the Notch transmembrane domain
[6,7]. This generates soluble NECD bound to Notch
ligand that is endocytosed into the signal-sending,
ligand-expressing cell [8], and the membrane-bound
NEXT fragment described above. The second cleavage
occurs within the transmembrane domain of Notch
receptors at the S3 site, and is catalysed by a complex
that includes presenilins and has y-secretase activity
[9]. Released NICD complexes with CSL/RBP-Jx,
recruits the co-activator Mastermind (MAML) and
other factors, and the complex activates Notch target
genes [10—12]. Ligand-induced Notch receptor cleavage
(activation) alters the expression of many Notch target
genes which regulate diverse signalling outcomes, rang-
ing from cell proliferation to cell fate determination,
and cell death. Aberrant changes in Notch signalling
cause disorders of development and adult diseases.
Therefore, precise temporal and spatial regulation of
Notch signalling at appropriate levels is critical for
optimal Notch signalling [13].

The EGF repeats in NECD are post-translationally
modified by distinct O-glycans. Glycosyltransferases
catalyse the addition of O-glycans to Notch EGF
repeats by transferring fucose from GDP-fucose, glu-
cose from UDP-glucose or N-acetylglucosamine
(GlcNAc) from UDP-GIcNAc to a Ser or Thr residue
in a specific consensus sequence. Each sugar may sub-
sequently be extended by the addition of 1-3 sugar
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residues added sequentially (Fig. 1). The different O-
glycans on NECD can regulate similar or different
aspects of Notch signalling (reviewed in Ref. [14-18]).
Roles for O-glycosylation of Notch have been per-
formed in vivo in different tissues, and in culture using
cell-based assays with various cell lines. More recently,
with the advent of exome sequencing, several human
pathologies have been associated with defects in the O-
glycosylation of Notch receptors (Fig. 2). This Review
will describe the O-glycans of NECD and the different
functions of each type of O-glycan in Notch signalling
in cells and organisms. It must be noted that Notch
ligands also contain EGF repeats that may be O-glyco-
sylated, and a limited subset of other secretory path-
way proteins contain EGF repeats with appropriate
consensus sequence(s) for modification with O-fucose,
O-glucose or O-GIcNAc glycans [19-21]. Functions of
O-glycans attributed to Notch signalling arising from
mutations in glycosyltransferase genes are therefore
based on evidence of Notch signalling dependence
using Notch signalling reporter constructs, gamma-
secretase inhibitors (GSI) that prevent S3 cleavage,
effects on the expression of Notch pathway genes, and
also the similarity of observed phenotypes to mutants
with defects in other Notch pathway members. Muta-
tion of O-glycan attachment sites (Ser/Thr) to investi-
gate functions of a specific O-glycan is also an
important strategy. However, such experiments require
probing of several amino acid changes that abolish O-
glycosylation, as well as the exchange of Ser to Thr or
Thr to Ser, respectively, to establish that it is the miss-
ing O-glycan, and not the altered amino acid, that is
required at a given attachment site [22].

O-fucose glycans

Discovery and cell-based assays

In a Drosophila screen for modifiers of Notch sig-
nalling, a gene named Fringe was shown to be
required for Notch signalling at the dorsal/ventral
boundary of the wing disc in third instar larvae
[23,24]. Fringe was subsequently shown to be a glyco-
syltransferase that transfers GIcNAc in B1,3-linkage to
O-fucose on certain Notch EGF repeats [25,26]. These
findings established a new paradigm of glycan regula-
tion of a cell fate-determining signalling pathway.
Amongst potential substrates of Fringe, Notch recep-
tors contain a high number of putative consensus sites
for the O-fucose modification [27], and all are indeed
modified [28,29]. Based on in silico and structural stud-
ies, the consensus site for the addition of O-fucose is
C*xxxxS/TC? [where Ser (S) or Thr (T) accepts the
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Mouse NOTCH1 extracellular domain
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Fig. 1. Representation of mouse NOTCH1 extracellular domain depicting EGF repeats with different O-glycan consensus sites that may be
modified with the O-glycans shown. One of the EGF domains is magnified to show the consensus site for each type of O-glycan. Different
O-glycans, their respective differential extension with sugars (+/—), and the glycosyltransferases responsible for the transfer of each sugar
are shown below the diagram. The transfer of O-glucose by POGLUT2 or POGLUT3 occurs only on EGF11 in NOTCH1. The consensus site
is between Cys® and Cys?, indicated by the different location of the glucose symbol in EGF11 in the diagram.

fucose, and C? and C? are the second and third cys-
teines of the EGF repeat; x is any amino acid] [19,21].
The enzyme responsible for the addition of O-fucose
to appropriate EGF repeats, protein O-fucosyltransfer-
ase 1 (POFUTI), is encoded by Ofutl in Drosophila
and Pofutl in mammals [30]. Pofut2 encodes a distinct
protein O-fucosyltransferase that does not act on EGF
repeats, but instead transfers O-fucose to throm-
bospondin type 1 repeats [31].

POFUTI1 activity was first identified in Chinese
hamster ovary (CHO) cells [32], and cloning revealed
high sequence conservation from Caenorhabditis ele-
gans to mammals [33]. The OFUTI1/POFUTI1 enzyme
is a resident of the endoplasmic reticulum (ER) with
an ER retention signal at the C-terminus. OFUTI/
POFUT]I catalyses transfer of fucose most efficiently
to properly folded EGF repeats [25,34,35]. Loss of
Ofutl in Drososphila S2 cells results in the loss of
Notch ligand binding [36,37]. CHO cells deficient in
fucosylation exhibit reduced Notch signalling stimu-
lated by Jagged 1 (JAGI) [25,38]. Initial studies indi-
cated that knockdown or loss of Ofutl did not alter
Notch receptor expression at the cell surface [37,39].
However, subsequent investigations suggested a more
complex picture. One group provided evidence that
Drosophila OFUTI is a chaperone for Notch required
for its trafficking out of the endoplasmic reticulum
(ER) [40], whereas others proposed that OFUT1 was
required later in the secretory pathway to maintain
Notch stability at the cell surface [41]. To distinguish
roles for the O-fucose on Notch EGF repeats versus
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O-fucosyltransferase activity in Notch receptor traf-
ficking, experiments were performed with a mutant
Ofut1®°* which has little or no O-fucosyltransferase
activity. Ofutl-null Drosophila expressing Ofutl®***
were partially rescued in development, and Notch cell
surface expression was increased in embryos, consis-
tent with enzyme-dead OFUTI acting as a Notch
chaperone [42]. Further analysis in other Drosophila
mutants with intact Ofutl, but lacking the ability to
synthesize GDP-fucose, showed that O-fucose has a
role in Notch signalling that is not merely to provide a
substrate for Fringe [43]. In Pofut/-null mouse embry-
onic stem (ES) cells [44], hematopoietic stem cells
(HSC) [45] and CHO cells [46], Notch receptor cell
surface expression is essentially unaltered or somewhat
reduced [47], but Notch-ligand binding and ligand-
induced Notch signalling are greatly reduced.
Although  PofutI®***  partially rescues Notch
signalling in Pofutl-null ES cells, so does an enzyme-
dead, ER glucosidase [44], suggesting that up-regulation
of general chaperones may be responsible. Interest-
ingly, overexpression of the human equivalent POFU-
TIR240A4, in POFUTI-null human osteosarcaoma
(U20S8) cells partially rescues Notch ligand binding
and Notch signalling [48]. However, mouse embryos
that are homozygous for PofutI®*** die at mid-
gestation, with a phenotype indistinguishable from
Pofutl-null embryos [49]. This is presumably because
of the unexpected finding that POFUTI(R245A) is
degraded in embryos, making homozygous mutant
embryos effectively null. Accumulation of NOTCHI1
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Fig. 2. The human mutations and pathologies associated with glycosyltransferases that modify Notch receptors. The diagram of each
glycosyltransferase represents protein size, with the signal peptide or transmembrane domain identified by a grey box and each ER
retention sequence given at the C-terminus. The human mutations identified so far are mentioned below each protein diagram, with the

corresponding pathologies referred to in the disease column.

intracellularly is observed in PofutI-null somites [49,50].
By contrast, Pofutl-null inner ear cells [51], endo-
cardium [46], and HSC [52] exhibit substantially reduced
Notch signalling, but were shown in the latter two cases
to express NOTCHI at the cell surface equivalently to
wild type.

Several groups have addressed the requirement for
O-fucose versus POFUTI! by examining mutants
unable to synthesize GDP-fucose (GDP-Fuc), the
nucleotide sugar substrate of POFUTI. In the mouse,
homozygous embryos that cannot make GDP-fucose
are rescued by maternal GDP-Fuc to varying degrees
[53,54]. Homozygous mutants that are born have
greatly reduced myeloid and lymphoid cells showing
that POFUTI, which is present at normal levels, can-
not rescue Notch signalling by chaperone activity. In
Lecl3 CHO cells which have very low levels of GDP-
fucose, Notch receptors are well expressed at the cell
surface, but Notch ligand binding and ligand-induced

Notch signalling are markedly reduced, whereas
POFUTI1 levels are unaltered [44]. In Drosophila,
embryos unable to synthesize GDP-Fuc do not show
typical Notch neurogenic defects as observed if Ofutl
is mutated, but die as first instar larvae, suggesting
that O-fucose is required as a substrate of Fringe [42].
However, loss of GDP-Fuc synthesis in large areas of
the wing reveal Fringe-independent Notch signalling
defects [55]. Similar experiments reveal a temperature-
sensitive loss of Notch signalling during neurogenesis
in Drosophila mutants that cannot make GDP-Fuc
[43]. At 30 °C, Notch lacking O-fucose is unable to
signal, whereas signalling is normal at 25 °C. Loss of
GDP-Fuc from mouse HSC leads to a reduction in self
renewal, and an altered ability to occupy the bone
marrow niche [56]. Thus, it is apparent that OFUT1/
POFUT]1 present at normal levels is unable to rescue
Notch signalling in several in vivo contexts in which
Notch does not carry O-fucose glycans, but is
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nevertheless expressed at the cell surface. Therefore,
broad generalizations about OFUTI1/POFUTI1 as a
Notch chaperone required for cell surface expression
of Notch cannot be made, since cellular context is
clearly of utmost importance in determining effects on
Notch receptor trafficking when OFUTI1/POFUTI is
enzymatically inactive or absent.

While ligand-induced Notch signalling assays reveal
that O-fucose glycans regulate the strength of Notch
signalling, and flow cytometry and surface plasmon
resonance assays reveal effects on the binding of dif-
ferent Notch ligands, such assays do not address
whether O-fucose glycans on Notch receptors physi-
cally interact with Notch ligands. However, recent X-
ray studies have begun to elucidate mechanistic roles
for O-fucose in Notch receptor-ligand binding. Thus,
co-crystals of NOTCH1 EGF11-13 with a Delta-like
4 (DLL4) N-terminal ECD fragment identified pre-
cisely how the O-fucose on EGF12 of NOTCHI1 inter-
acts directly with the module at the N-terminus of
Notch ligands (C2 domain) of DLL4 [57]. The authors
propose that the fucose functions as a 21st amino
acid. Subsequently, they solved co-crystals of a larger
NOTCHI1 fragment (EGFS-EGF12) and a JAG1 N-
terminal ECD fragment [58]. In this case, they
observed not only interactions with the O-fucose in
NOTCHI1 EGF12 with the C2 domain of JAGI, but
also between EGF3 of JAGI and the O-Fuc in EGFS8
of NOTCHI, thereby extending the ligand binding
domain of NOTCHI1. This finding was consistent with
the effects of a mutation in Drosophila Notch EGFS8
that affects Serrate-induced, but not Delta-induced,
Notch signalling [59]. Co-culture assays using engi-
neered forms of Notch receptors and ligands have fur-
ther defined mechanisms by which DLL1, DLL4 and
JAGI regulate Notch signalling [60,61]. Single-cell
reporter assays showed that DLLI1 stimulates Notch
signalling in a pulsatile fashion, whereas DLL4 stimu-
lates in a sustained manner [61]. These differences lead
to different cell fate outcomes — DLL1-induced Notch
signalling promotes myogenesis, whereas DLL4-
induced signalling inhibits myogenesis [61,62]. Such
assays elegantly dissect the Notch signalling pathway
and reveal the critical necessity of optimal regulation
of Notch signalling strength. Too much, or too little
Notch signalling may each have deleterious conse-
quences.

The O-fucose modification on Notch may be elon-
gated to form a disaccharide, trisaccharide or tetrasac-
charide by the sequential addition of GIcNAc,
galactose (Gal) and N-acetylneuraminic acid (NeuAc)
respectively [25,27]. Fringe adds GIcNAc to O-fucose
on properly folded EGF repeats at highest efficiency

Functions of O-Glycans in Notch Signalling

[25,63]. Drosophila has a single Fringe, but there are
three homologues in mammals — Lunatic (LFNQG),
Manic (MFNG) and Radical (RFNG) [64]. In vitro
assays of recombinant enzymes show mouse LFNG to
be the most active [65]. Co-culture Notch reporter
assays and ligand binding assays revealed the
important role of GIcNAc addition to O-fucose in
promoting Delta binding to Notch receptors and
Delta-induced Notch signalling, while simultaneously
inhibiting Jagged binding to Notch and reducing
Jagged-induced Notch signalling [25,36,38,44,66—69].
Mosaic experiments in Drosophila showed that
removal of Fringe from Notch ligand-expressing cells
of the wing disc did not alter ligand ability to induce
Notch signalling [24]. Co-culture assays with CHO
cells expressing a Notch reporter with or without
LENG, MFNG or RFNG, or inducible DLL1 or
JAGI, showed that Fringe modification in cis (i.e. in
the Notch expressing cell) promotes cis inhibition of
Notch signalling by DLLI, but weakens cis inhibition
by JAGI in the cases of LFNG and MFNG, whereas
RFNG promotes cis inhibition by DLLI1 and JAGI
alike [60]. These effects are similar to the effects of
Fringe on Notch signalling in trans. It will be most
interesting to see co-crystals of NOTCHI and Notch
ligand fragments with O-fucose plus GIcNAc to gain
molecular insights into the different effects of Fringe
on Delta versus Jagged binding. Modelling GIcNAc
into the DLL4/NOTCHI1 fragment crystal structure
predicts specific amino acid interactions [57]. Binding
to both DLLI and JAGI is increased when the O-
fucose in EGF12 of the NOTCH1 EGFI11-13 frag-
ment is elongated by Fringe [70]. A Fringe code has
been proposed based on the differential modification
of NOTCHI1 EGF repeats by LFNG versus MFNG
or RFNG, and the consequences for Notch ligand
binding and Notch signalling in human embryonic
kidney (HEK)-293T cells [29]. However, these results
come from overexpressed transfected Fringe genes in
cultured cells. It will be interesting to determine
whether a Fringe code leads to functional conse-
quences in vivo in mice expressing only a single Fringe
[71]. Elongation of O-Fuc-GlcNAc by Gal was shown
to be necessary for optimal Notch signalling in CHO
cell reporter assays, whereas the further elongation of
Gal by NeuAc appears to be dispensable for Notch
signalling [38,72].

In vivo consequences of defective O-fucose
glycan synthesis or loss of O-fucose sites

In Drosophila, expression of Ofutl is regulated during
embryonic development and Ofutl is differentially
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expressed in adult tissues. Loss or suppression of
Ofutl in Drosophila results in phenotypes similar to
those of Notch pathway mutants such as lateral inhibi-
tion in the nervous system, and cell lineage decisions
in sensory organ precursor cells [37,39]. Expression of
Ofutl with no or low fucosyltransferase activity
(Ofut1®?*4) rescues fringe-dependent neurogenesis in
Drosophila embryos [42]. Loss of Pofutl in mice is
embryonic lethal [50,73], as are Pofurl®*** homozy-
gotes due to degradation of the mutant enzyme [49].
These mice show the characteristic phenotype associ-
ated with defective Notch signalling, including growth
retardation, due in part to disrupted somitogenesis,
vascularization defects, and defects in neural tube for-
mation. Pofutl null embryos share phenotypes not
only with Notch receptor null mice, but also with
Notch downstream effector-deficient mice. Therefore,
only conditional deletion of Pofutl can be used to
study requirements for O-fucose glycans in Notch sig-
nalling in different cell types. Alternatively, mutation
of O-fucose sites in the EGF repeats of Notch recep-
tors or Notch ligands has been used.

Conditional deletion of Pofut! in bone marrow
cells and stroma with Mx/-Cre causes cell-fate
defects in lymphoid and myeloid cell differentiation.
Cells lacking POFUT1 exhibit no Notch ligand bind-
ing but only a slight decrease in cell surface expres-
sion of NOTCHI1 and NOTCH2 receptors [45].
Residual Notch signalling occurs in these bone mar-
row cells, since deletion of the Notch downstream
effector RBP-Jk via the same method gave a more
severe phenotype [52,74]. Similarly, deletion of Pofutl
in the endocardium via NfatcI-Cre is less severe than
deletion of Notchl by the same strategy [46]. Residual
DLL4-induced Notch signalling in this case allowed
the identification of angiogenic precursor cells
involved in coronary arteriogenesis. Yet another
example in which conditional deletion of Pofutl gives
a milder phenotype than deletion of Notchl is dele-
tion via Pax2-Cre in the inner ear [5S1]. These exam-
ples were unexpected given that the Pofutl-null
embryonic phenotype is similar to that of a Notchl-
null. Deletion of Pofutl in intestinal epithelium by
Villin-Cre [75] or in bone marrow by Mx1-Cre [45]
has milder consequences than deleting RBP-Jk in the
same manners [52,76]. In contrast, deletion of Pofutl
in lung [77] or skin [78] gives severe Notch signalling-
defective phenotypes.

In humans, several heterozygous autosomal domi-
nant mutations, and a homozygous recessive mutation
in the POFUTI gene, have been associated with dis-
ease (Fig. 2). Pigmentation defects are characteristic of
the autosomal dominant mutations which give rise to
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a syndrome termed Dowling-Degos Disease 4 (DDD4)
[79-81]. A recently identified heterozygous mutation in
POFUTI, associated with DDD4 is also accompanied
by Hidradenitis Suppurativa (HS) which is marked by
recurrent painful nodules and abscesses [82]. A
homozygous recessive mutation in POFUTI ablates a
N-glycan site and is correlated with more severe devel-
opmental defects [83]. However, the loss of the N-gly-
can is not the basis of the reduced activity of
POFUTI1. Rather, it seems that Serl62 in the Asn-
Lys-Ser N-glycan sequon cannot be replaced by Leu,
though it can be replaced by Gln, a change that appar-
ently enhances POFUTI1 activity. Enhanced POFUT1
activity has been associated with tumour progression
and increased Notch signalling in liver cancer [84].
Since POFUT1 may modify ~ 100 different proteins
that contain appropriate EGF repeat(s), it is also
important to determine functions of O-fucose by
mutating O-fucose sites in POFUTI1 substrates.
Removal of the O-fucose site in EGF12 of Drosophila
Notch (N-EGF12f) revealed that the O-fucose glycan
is important for inhibiting Serrate-induced Notch func-
tions in the wing disc, and binding of Delta and Ser-
rate to N-EGFI12f was enhanced [85]. This is
surprising considering the crystal structures showing
the key role of NOTCHI EGFI12 O-fucose in mam-
malian DLL4 and JAGI binding [57,58]. The Notchl
[12f] mutation in mouse causes reduced ligand binding
to thymocytes, but no apparent effects on viability or
fertility [86]. However, Notch signalling is compro-
mised in NotchlI[12f/12f] mice, as reflected by the cell-
autonomous reduction in T cell development. Point
mutations have also been introduced into Notch
ligands DLLI1 [87] and DLL3 [88]. Only in the case of
DLL3 did elimination of two O-fucose sites in EGF2
and EGF5 have a functional effect, in that a mutant
transgene could not rescue somitogenesis in DI/I/3 null
embryos. It will be important to perform this experi-
ment by mutating the endogenous DI/I3 gene and
replacing the O-fucose Ser/Thr with the alternative
(Thr/Ser) that could receive a fucose, as well as with
amino acids other than Ala that cannot be O-fucosy-
lated. DLL1 has four EGF repeats that receive O-
fucose but DLLI1 expressed in Pofutl/-null presomitic
mesoderm or mouse embryo fibroblasts was localized
to the cell surface and stimulated Notch signalling
[87]. In contrast, experiments with intestinal cells
showed that Paneth cells have slightly reduced cell sur-
face expression of DLLI and DLL4 when RFNG is
absent, and cells from cultured intestinal organoids
have reduced DLL1 on the cell surface after knock-
down of Lfng [89]. Lfng knockout mice have reduced
DLL1 and DLL4 on the surface of goblet cells, whose
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numbers are increased due to a reduction in Notch sig-
nalling in the absence of Lfng [89]. Thus, depending
on cellular context, cell surface expression of Notch
ligands may be promoted by Fringe modification.

Elongation of O-fucose with a GIcNAc transferred
by Fringe is critical for development in Drosophila and
in mammals [90]. While there are three Fringe homo-
logues in mammals, numerous studies reveal a domi-
nant role for Lfng [91-93]. Mice lacking Lfng display
severe defects in somitogenesis [91,94,95], reproduction
[96,97], and T cell and B cell development [71,98,99].
However, genetic background affects survival and long-
evity of Lfng-null mice [71,91]. The dominance of Lfng
is clearly observed in retinal angiogenesis, in which all
three Fringe homologues are expressed by tip cells of
the growing angiogenic front [100]. Deletion of Lfng
causes excess vessel sprouting, despite the continued
expression of Mfng and Rfng. Lfng is proposed to pro-
mote DLL4-induced Notch signalling in tip cells, and
to inhibit JAGI-induced Notch signalling in stalk cells,
thereby promoting selection of tip cells [101]. An addi-
tive role of Lfng and Mfng occurs in marginal zone B-
cell development and in T-cell development
[71,102,103]. In fact, each Fringe gene expressed in the
absence of the other two can rescue altered T and B cell
development compared to triple Fringe knockout mice
[71]. Fringe regulates Notch signalling based on differ-
ential interactions between Notch modified by Fringe
with Delta-like versus Jagged Notch ligands. Fringe
may also promote the cell surface expression of Delta-
like ligands [89]. A role for the addition of Gal to
Fringe-modified Notch receptors was observed in B4-
galt] null embryos which exhibit reduced expression of
several Notch target genes during somitogenesis [104].
A patient with a mutation in B4GALT1 had severe neu-
rological defects and other pathologies consistent with
reduced Notch signalling [105].

Human mutations in LFNG give rise to spondylo-
costal dysostosis [106,107], but no mutations in MFNG
or RFNG have yet been associated with any human
pathology. However, upregulation of MFNG has been
correlated with tumour progression in claudin-low
breast cancer, due to increased Notch signalling and
the induction of PI3KCG [108]. In contrast, loss of
Lfng which suppresses JAGIl-induced NOTCHI1 sig-
nalling in mammary epithelium, in cooperation with
MET/CAVEOLIN gene amplification, promotes basal-
like breast cancer [109]. LFNG also functions as a
tumour suppressor in melanoma metastasis [110], and
in mouse models of pancreatic [111] and prostate can-
cer [112]. These results reveal fundamental roles of
Fringe in regulating Notch signalling. Further studies
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will help better elucidate different functions of the
three fringe homologues in mammals.

O-glucose glycans

Discovery and cell-based assays

Bovine blood coagulation factors VII and IX, were the
first proteins identified with an O-glucose modification
on EGF repeats [113]. O-glucose was subsequently iden-
tified on NOTCHI1 in CHO cells [27]. O-glucose was
also found extended by xylose in al,3-linkage, or by
two xylose moieties to form a trisaccharide [114]. In
Drosophila, only one enzyme has been identified as a
glucoside xylosyltransferase (GXYLT) termed Shams
[115], whereas in mammals, the addition of the first
xylose is mediated by GXYLT1 or GXYLT2, and the
second xylose is added in al,3-linkage by xylose xylosyl-
transferase 1 (XXYLT1) [114,116]. A Drosophila Xxyltl
was recently identified and shown to repress Delta-
Notch signalling [117]. Thus, loss of Drosophila Xxyltl
was found to promote Delta-Notch signalling in an
appropriately sensitized genetic background. The con-
sensus site for O-glucose addition to most EGF repeats
of Notch receptors and ligands is C'xSxA/PC?, where
C! and C? are the first and second cysteines of the EGF
repeat, S is the Ser that accepts glucose, x is any amino
acid, Pis Pro and A is Ala [118,119] (Fig. 1). Mass spec-
trometric analysis of Drosophila NOTCH1 ECD from
S2 cells and NOTCH isolated from Drosophila embryos
demonstrated the presence of O-glucose on all predicted
18 sites. However, O-glucose-xylose disaccharide was
found only on EGF13-20 and EGF25. Similarly, the
trisaccharide was found on a restricted subset of the
EGF repeats with O-glucose [28]. Both the addition of
O-glucose and its elongation by xylose is dependent on
the amino acids in the consensus site and the proper
folding of the EGF repeat [120]. The O-glucosyltrans-
ferase is encoded by Rumi in Drosophila [121] and the
protein O-glucosyltransferase 1 gene Poglut! in mam-
mals [122]. POGLUT]I is an ER resident enzyme [121].
In vitro knockdown of Rumi in Drosophila S2 cells and
mammalian cell lines reduces Notch signalling due to
defects in Notch receptor cleavage upon ligand binding.
However, loss of O-glucose glycans does not reduce
Notch ligand binding. Thus, O-glucose glycans appear
to promote a conformational change in Notch receptors
after ligand interaction, and are required for S2 cleavage
by ADAM proteases [123,124]. Furthermore, crystal
structures of a NOTCHI1 ligand-binding fragment
bound to a N-terminal fragment of DLL4 demonstrate
that O-glucose on EGF12 and EGF13 are located away
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from the DLL4 binding face, and cover hydrophobic
residues Pro and Phe in these EGF repeats [57], hence
supporting the notion that O-glucose is not required for
Notch-ligand interactions. The presence of a novel, O-
linked hexose attached to Ser in EGF11 at a site which
does not match the consensus of an O-glucose site was
revealed in crystal structures [57,125]. This modification
is conserved in other Notch receptors, except NOTCH2,
at the consensus site C*’xNTxGSFxC®. The hexose was
recently identified as a glucose residue which is added
by POGLUT2 or POGLUT3, homologues of
POGLUTI [126]. Mutations of single O-glucose sites in
NECD do not affect the cell surface expression of
Notch, nor impair Notch activation, except for muta-
tion in EGF28 [15,127]. Although, the O-glucose con-
sensus site in EGF28 is present in mammalian
NOTCHI, and not present in Drosophila Notch or
other mammalian Notch receptors, mutation of Ser to
Ala in EGF28 of NOTCHI1 causes a decrease of Delta-
induced Notch signalling, but does not affect signalling
mediated by Jagged ligands. Deletion of Poglutl in
HEK-293T cells causes a mild reduction in cell surface
expression of NOTCHI, and enhanced secretion of sol-
uble NECD, suggesting that O-glucose glycans con-
tribute to trafficking or stability of Notch receptors [47].
Mutation of the O-glucose site in EGF11 to Ala has no
effects on cell surface expression of NOTCHI, DLLI
binding or DLLI-induced NOTCHI signalling [126].
However, the combined mutation of EGF11 and the O-
fucose site in EGF8 or EGF12 of NOTCHI1 has some-
what greater effects than the single O-fucose mutations.
It would be interesting to see if cells lacking both
POGLUT2 and POGLUT3, but retaining Ser in
EGF11, give the same results with NOTCH1 carrying
the EGF8 or EGF12 O-fucose mutations.

In vivo consequences of defects in O-glucose
glycan synthesis or loss of O-glucose sites

Loss of Rumi from Drosophila results in temperature-
sensitive Notch signalling defects [121]. Rumi-null flies
are viable at 18 °C but exhibit a slight Delta wing vein
phenotype. However, at 28 °C lethality occurs at the
larval stage, and reduced Notch signalling is observed
in all contexts studied. O-glucose on Notch in flies is
critical for S2 cleavage of Notch but ligand binding
remains unaffected. Furthermore, rumi mutant G189E
lacking transferase activity did not rescue defective
Notch signalling in rumi null flies, suggesting the impor-
tance of O-glucose glycans to Notch receptor trafficking
and stability at the cell surface. Multiple mutations in
O-glucosylation sites on NECD were essential for tem-
perature-sensitive Notch signalling defects to arise,
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whereas single-site mutations did not affect Notch sig-
nalling [127]. Poglutl~'~ mice are embryonic lethal and
die before E9.5 with severe defects in neural tube devel-
opment, cardiogenesis and somitogenesis [122]. Poglutl
null mutants die earlier than Notch pathway null
mutants, apparently due to the loss of O-glucose from
CRUMBS?2 [122]. Haploinsufficiency of Poglutl on a
Jagl heterozygous background results in decreased O-
glucosylation of NOTCHI and severe defects in bile
duct morphogenesis, suggesting a genetic interaction
between Poglutl and members of the Notch signalling
pathway [123]. Additionally, mutations in human
POGLUTI cause an autosomal dominant form of
Dowling-Degos Disease termed DDD2 [128-131], or a
recessive limb-girdle muscular dystrophy [132].

O-GIcNAc glycans

Discovery and cell-based assays

The presence of O-GlcNAc on EGF repeats of Notch
receptors was first identified in S2 cells on a Drosophila
NECD fragment containing EGF20 [133]. O-GlcNAc
is added to Ser/Thr between the fifth and sixth cys-
teines of an EGF repeat with the consensus site C°xxG
(Y/F)(T/S)Gx» 5C® [20,133-135]. Of the 36 EGF
mouse NOTCHI repeats, 17 have a consensus site for
O-GIcNAc and Drosophila Notch has 18 consensus
sites. However, mass spectrometry on Notch purified
from S2 cells and Drosophila larvae identified O-
GIcNAc on only five sites [28]. In mammalian cells, O-
GIcNAc can be further elongated by Gal [134] and
probably sialic acid. The enzyme responsible for the
addition of O-GIcNAc on EGF repeats was identified
in  Drosophila as EGF-domain-specific O-GIcNAc-
transferase (EOGT). EOGT is conserved across species
and is localized to the ER by a signal peptide at the N
terminus and a C-terminal KDEL sequence [134].
Studies using knockdown and knockout of FEogt in
mammalian cell lines suggest that O-GIcNAc on Notch
receptors promotes Delta-mediated Notch signalling,
but does not significantly affect JAG1-induced Notch
signalling [136]. Loss of EOGT inhibits binding of
Delta-like ligands but not JAGI, suggesting that O-
GIcNAc on Notch plays specific roles in Notch ligand
binding and Notch signalling [136].

In vivo consequences of defects in O-GIcNAc
glycans and loss of O-GlcNAc sites

Loss of eogt in flies results in lethality, mostly during
second instar larval development, with a few survivors
at the early third-instar stage [134,135]. However,
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larvae lacking eogt do not show a phenotype similar
to flies with Notch-deficient signalling. Knockdown of
eogt in the fly wing results in blistering that may arise
from roles for O-GIcNAc on Dumpy, an extracellular
matrix protein with a large number of EGF repeats.
Ligand-induced Notch signalling promotes blistering
when Notch lacks O-GIcNAc because the phenotype is
partially rescued with the loss of one allele of Notch or
Notch pathway members such as Delta or Serrate that
reduces Notch signalling, suppressor of hairless (Su(H)
or maml) [135]. Such genetic interaction studies pro-
vided the first link between Notch signalling and Eogt
which has now been validated in mammalian cells and
mice. In the mouse, Eogt expression is enhanced in the
presomitic mesoderm at E9.5, and limited to the digits
of developing limbs by E12.5 [137]. Eogt null mice are
viable, fertile and do not show a typical Notch pheno-
type [136]. Using retinal angiogenesis as a sensitive
assay for ligand-induced Notch signalling [100], defec-
tive angiogenesis with leaky blood vessels is observed
in mice lacking Eogt [136]. Loss of FEogt results in
increased blood vessel branching and increased tip cell
numbers, which is characteristic of disrupted DLL4-
NOTCHI signalling Thus, in retinal angiogenesis, loss
of FEogt recapitulates results in cell lines and reveals
the importance of O-GIcNAc in promoting optimal
Delta-induced Notch signalling. In humans, mutations
in EOGT cause a rare, congenital disorder termed
Adams-Oliver Syndrome 4 (AOS4) [137-139]. Symp-
toms include cutis aplasia of the scalp, defects in the
development of digits, vascular defects and, in some
cases, cardiac defects. Autosomal dominant mutations
in NOTCHI, DLL4 and RBPJ genes have also been
identified in patients diagnosed with AOS [140-143].

Synergistic and redundant roles for O-
fucose and O-glucose glycans

While the majority of studies to date have focused on
understanding the functions of each type of O-glycan
independently, a few studies have investigated roles for
O-glucose and O-fucose glycans together. In Droso-
phila, loss of O-fucose or O-glucose separately causes
temperature-sensitive Notch signalling defects that
manifest at 30 °C [43]. However, at 25 °C each mutant
behaves essentially like wild type. When, however,
both O-fucose and O-glucose glycans are not trans-
ferred to Notch, Notch signalling is lost at 25 °C. This
correlates with accumulation of Notch in the ER,
whereas loss of O-fucose or O-glucose alone allowed
exit of Notch from the ER. Thus O-glucose and O-
fucose glycans function synergistically to support
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Notch trafficking out of the ER in Drosophila. Consis-
tent with this, in mammalian cells in which both
POFUT! and POGLUTI1 were deleted to give
NOTCHI lacking both O-fucose and O-glucose gly-
cans, NOTCHI1 was not expressed well at the cell sur-
face, whereas loss of either O-glycan alone allowed cell
surface expression of NOTCHI1 [47]. In another study,
the presence of xylose in O-glucose glycans was also
found to contribute to Notch trafficking and Notch
signalling in Drosophila but only in the context of a
double mutant [144]. Thus, Notch lacking both O-
fucose and the dixylose on O-glucose was mislocalized
from the apical plasma membrane to adherens junc-
tions, and had reduced Notch signalling [144]. Notch
lacking O-glucose (including dixylose) and O-fucose
was not exported from the endoplasmic reticulum.
Thus, some functions of sugars (e.g. dixylose) may
only be observed in the absence of a compensatory
sugar (e.g. O-fucose), and this may in turn depend on
cellular context.

Conclusions

It is apparent from studies published over the past
18 years that distinct O-glycans on Notch receptors
are essential for regulating and optimizing different
aspects of Notch signalling. O-glucose glycans on
Notch positively regulate the cleavage of Notch recep-
tors upon ligand binding, and promote receptor traf-
ficking to the cell surface, but do not directly mediate
interactions with Notch ligands. However, extension of
O-glucose by xylose negatively regulates Notch sig-
nalling, in a context dependent manner. O-fucose gly-
cans influence Notch signalling by differentially
regulating Notch ligand binding to Delta and Jagged
ligands. In Drosophila and certain numerous mam-
malian cell types, POFUTI is important for promoting
Notch receptor trafficking to the cell surface. How-
ever, in mammalian cells lacking POFUT1 NOTCH1
and other Notch receptors are well expressed at the
cell surface but do not bind Notch ligands or exhibit
ligand-induced Notch signalling. The addition of
GIcNAc to O-fucose by Fringe differentially modulates
Notch receptor interactions with the various ligands.
LFNG and MFNG generally promote Delta ligand
binding and inhibit Jagged ligand binding, whereas
RFNG promotes both Delta and Jagged ligand bind-
ing. The more recently identified O-GIcNAc modifica-
tion on Notch appears to mediate Notch signalling via
Delta but not Jagged ligands based on both cell-based
and in vivo studies. Mutations in several of the glyco-
syltransferases that synthesize the O-glycans on Notch
receptors cause a variety of defects in Notch signalling,
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establishing the biological importance of O-glycans in
regulating and optimizing the strength of Notch sig-
nalling. Human mutations in several glycosyltrans-
ferase are associated with different pathologies, which
are also associated with mutations in Notch and
Notch pathway members. The ExAc browser [145]
describes exon sequencing data from 60 706 unrelated
individuals, not including people with known congeni-
tal mutations, and reports single-nucleotide mutations
including missense and nonsense mutations in the dif-
ferent glycosyltransferase genes described above. A few
healthy people with homozygous missense mutations
have been reported, indicating that these mutations are
not important for the activity of the relevant glycosyl-
transferase. While the majority of studies to date have
focused on understanding the roles of each type of gly-
can independently, a few studies have revealed syner-
gistic and redundant roles of O-glucose and O-fucose
glycans. Future efforts should continue along this line
of inquiry to reveal how all the O-glycans on Notch
receptors and ligands work separately and together to
optimize Notch signalling. These studies will reveal
synergistic, redundant and nonoverlapping functions
of the glycans which will further help to elucidate how
O-glycans on Notch regulate diverse cell fate decisions.
Insights from these studies will help to design potential
targets for therapeutic purposes.
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