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Notch signalling regulates a plethora of developmental processes and is also

essential for the maintenance of tissue homeostasis in adults. Therefore, fine-

tuning of Notch signalling strength needs to be tightly regulated. Of key

importance for the regulation of Notch signalling are O-fucose, O-GlcNAc

and O-glucose glycans attached to the extracellular domain of Notch recep-

tors. The EGF repeats of the Notch receptor extracellular domain harbour

consensus sites for addition of the different types of O-glycan to Ser or Thr,

which takes place in the endoplasmic reticulum. Studies from Drosophila to

mammals have demonstrated the multifaceted roles of O-glycosylation in reg-

ulating Notch signalling. O-glycosylation modulates different aspects of

Notch signalling including recognition by Notch ligands, the strength of

ligand binding, Notch receptor trafficking, stability and activation at the cell

surface. Defects in O-glycosylation of Notch receptors give rise to patholo-

gies in humans. This Review summarizes the nature of the O-glycans on

Notch receptors and their differential effects on Notch signalling.
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Notch signalling is a well-characterized, evolutionarily

conserved pathway that plays multiple roles in the regu-

lation of embryonic development, and in the mainte-

nance of tissue homeostasis. Defective Notch signalling

leads to numerous pathologies in development, and to

different adult diseases [1]. In mammals, there are four

different Notch receptors (NOTCH1 to NOTCH4),

whereas Drosophila has only one homologue which is

most similar to NOTCH1. Notch receptors are single

transmembrane glycoproteins, comprising an extracellu-

lar domain (NECD), a transmembrane region, and an

intracellular domain (NICD) (reviewed in Ref. [2–4]).
The NECD comprises 29–36 epidermal growth factor-

like (EGF) repeats, which include Notch ligand-binding

domains. The EGF repeats are followed by the negative

regulatory region (NRR), which is composed of three

cysteine-rich Lin12 Notch repeats and a heterodimeriza-

tion domain (HD). NECD is noncovalently linked at

the HD to the N-terminal 12 amino acids of NICD that

are external to the transmembrane domain (termed

NEXT for Notch extracellular truncation [5]). NICD

and NECD are generated by furin cleavage at the S1
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site during passage through the Golgi. NICD is charac-

terized by an RBP-Jj-associated module (RAM) and

ankyrin (ANK) repeats, both of which are required for

interactions with the DNA-binding complex CBF1–
Suppressor of Hairless–LAG1 (CSL). Near the C-termi-

nus of Notch receptors is a PEST domain, which regu-

lates NICD degradation by the proteasome. Between

the ANK repeats and the PEST domain, NICD also

contains several nuclear localization signals, and a

domain that confers transactivation of transcriptional

repressors (TAD).

Notch signalling is mediated by short-range, cell-cell

interactions between signal-sending cells expressing

Notch ligands, and signal-receiving cells expressing

Notch receptors. Signalling strength is fine-tuned by

numerous factors, including the expression of Notch

ligands that cause cis-inhibition of Notch receptors in

signal-receiving cells, molecules involved in secretory

pathway trafficking, and the O-glycans attached to

NECD. The canonical Notch signalling pathway

involves Notch ligands Delta or Serrate (in Drosophila)

and Delta-like or Jagged (in mammals), binding to

NECD of Notch receptors and initiating two, sequen-

tial proteolytic cleavages. The first is caused by a disin-

tegrin and metalloprotease (ADAM) and occurs at the

S2 site adjacent to the Notch transmembrane domain

[6,7]. This generates soluble NECD bound to Notch

ligand that is endocytosed into the signal-sending,

ligand-expressing cell [8], and the membrane-bound

NEXT fragment described above. The second cleavage

occurs within the transmembrane domain of Notch

receptors at the S3 site, and is catalysed by a complex

that includes presenilins and has c-secretase activity

[9]. Released NICD complexes with CSL/RBP-Jj,
recruits the co-activator Mastermind (MAML) and

other factors, and the complex activates Notch target

genes [10–12]. Ligand-induced Notch receptor cleavage

(activation) alters the expression of many Notch target

genes which regulate diverse signalling outcomes, rang-

ing from cell proliferation to cell fate determination,

and cell death. Aberrant changes in Notch signalling

cause disorders of development and adult diseases.

Therefore, precise temporal and spatial regulation of

Notch signalling at appropriate levels is critical for

optimal Notch signalling [13].

The EGF repeats in NECD are post-translationally

modified by distinct O-glycans. Glycosyltransferases

catalyse the addition of O-glycans to Notch EGF

repeats by transferring fucose from GDP-fucose, glu-

cose from UDP-glucose or N-acetylglucosamine

(GlcNAc) from UDP-GlcNAc to a Ser or Thr residue

in a specific consensus sequence. Each sugar may sub-

sequently be extended by the addition of 1–3 sugar

residues added sequentially (Fig. 1). The different O-

glycans on NECD can regulate similar or different

aspects of Notch signalling (reviewed in Ref. [14–18]).
Roles for O-glycosylation of Notch have been per-

formed in vivo in different tissues, and in culture using

cell-based assays with various cell lines. More recently,

with the advent of exome sequencing, several human

pathologies have been associated with defects in the O-

glycosylation of Notch receptors (Fig. 2). This Review

will describe the O-glycans of NECD and the different

functions of each type of O-glycan in Notch signalling

in cells and organisms. It must be noted that Notch

ligands also contain EGF repeats that may be O-glyco-

sylated, and a limited subset of other secretory path-

way proteins contain EGF repeats with appropriate

consensus sequence(s) for modification with O-fucose,

O-glucose or O-GlcNAc glycans [19–21]. Functions of

O-glycans attributed to Notch signalling arising from

mutations in glycosyltransferase genes are therefore

based on evidence of Notch signalling dependence

using Notch signalling reporter constructs, gamma-

secretase inhibitors (GSI) that prevent S3 cleavage,

effects on the expression of Notch pathway genes, and

also the similarity of observed phenotypes to mutants

with defects in other Notch pathway members. Muta-

tion of O-glycan attachment sites (Ser/Thr) to investi-

gate functions of a specific O-glycan is also an

important strategy. However, such experiments require

probing of several amino acid changes that abolish O-

glycosylation, as well as the exchange of Ser to Thr or

Thr to Ser, respectively, to establish that it is the miss-

ing O-glycan, and not the altered amino acid, that is

required at a given attachment site [22].

O-fucose glycans

Discovery and cell-based assays

In a Drosophila screen for modifiers of Notch sig-

nalling, a gene named Fringe was shown to be

required for Notch signalling at the dorsal/ventral

boundary of the wing disc in third instar larvae

[23,24]. Fringe was subsequently shown to be a glyco-

syltransferase that transfers GlcNAc in b1,3-linkage to

O-fucose on certain Notch EGF repeats [25,26]. These

findings established a new paradigm of glycan regula-

tion of a cell fate-determining signalling pathway.

Amongst potential substrates of Fringe, Notch recep-

tors contain a high number of putative consensus sites

for the O-fucose modification [27], and all are indeed

modified [28,29]. Based on in silico and structural stud-

ies, the consensus site for the addition of O-fucose is

C2xxxxS/TC3 [where Ser (S) or Thr (T) accepts the
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fucose, and C2 and C3 are the second and third cys-

teines of the EGF repeat; x is any amino acid] [19,21].

The enzyme responsible for the addition of O-fucose

to appropriate EGF repeats, protein O-fucosyltransfer-

ase 1 (POFUT1), is encoded by Ofut1 in Drosophila

and Pofut1 in mammals [30]. Pofut2 encodes a distinct

protein O-fucosyltransferase that does not act on EGF

repeats, but instead transfers O-fucose to throm-

bospondin type 1 repeats [31].

POFUT1 activity was first identified in Chinese

hamster ovary (CHO) cells [32], and cloning revealed

high sequence conservation from Caenorhabditis ele-

gans to mammals [33]. The OFUT1/POFUT1 enzyme

is a resident of the endoplasmic reticulum (ER) with

an ER retention signal at the C-terminus. OFUT1/

POFUT1 catalyses transfer of fucose most efficiently

to properly folded EGF repeats [25,34,35]. Loss of

Ofut1 in Drososphila S2 cells results in the loss of

Notch ligand binding [36,37]. CHO cells deficient in

fucosylation exhibit reduced Notch signalling stimu-

lated by Jagged 1 (JAG1) [25,38]. Initial studies indi-

cated that knockdown or loss of Ofut1 did not alter

Notch receptor expression at the cell surface [37,39].

However, subsequent investigations suggested a more

complex picture. One group provided evidence that

Drosophila OFUT1 is a chaperone for Notch required

for its trafficking out of the endoplasmic reticulum

(ER) [40], whereas others proposed that OFUT1 was

required later in the secretory pathway to maintain

Notch stability at the cell surface [41]. To distinguish

roles for the O-fucose on Notch EGF repeats versus

O-fucosyltransferase activity in Notch receptor traf-

ficking, experiments were performed with a mutant

Ofut1R245A which has little or no O-fucosyltransferase

activity. Ofut1-null Drosophila expressing Ofut1R245A

were partially rescued in development, and Notch cell

surface expression was increased in embryos, consis-

tent with enzyme-dead OFUT1 acting as a Notch

chaperone [42]. Further analysis in other Drosophila

mutants with intact Ofut1, but lacking the ability to

synthesize GDP-fucose, showed that O-fucose has a

role in Notch signalling that is not merely to provide a

substrate for Fringe [43]. In Pofut1-null mouse embry-

onic stem (ES) cells [44], hematopoietic stem cells

(HSC) [45] and CHO cells [46], Notch receptor cell

surface expression is essentially unaltered or somewhat

reduced [47], but Notch-ligand binding and ligand-

induced Notch signalling are greatly reduced.

Although Pofut1R245A partially rescues Notch

signalling in Pofut1-null ES cells, so does an enzyme-

dead, ER glucosidase [44], suggesting that up-regulation

of general chaperones may be responsible. Interest-

ingly, overexpression of the human equivalent POFU-

T1R240A, in POFUT1-null human osteosarcaoma

(U2OS) cells partially rescues Notch ligand binding

and Notch signalling [48]. However, mouse embryos

that are homozygous for Pofut1R245A die at mid-

gestation, with a phenotype indistinguishable from

Pofut1-null embryos [49]. This is presumably because

of the unexpected finding that POFUT1(R245A) is

degraded in embryos, making homozygous mutant

embryos effectively null. Accumulation of NOTCH1

Mouse NOTCH1 extracellular domain
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Fig. 1. Representation of mouse NOTCH1 extracellular domain depicting EGF repeats with different O-glycan consensus sites that may be

modified with the O-glycans shown. One of the EGF domains is magnified to show the consensus site for each type of O-glycan. Different

O-glycans, their respective differential extension with sugars (+/�), and the glycosyltransferases responsible for the transfer of each sugar

are shown below the diagram. The transfer of O-glucose by POGLUT2 or POGLUT3 occurs only on EGF11 in NOTCH1. The consensus site

is between Cys3 and Cys4, indicated by the different location of the glucose symbol in EGF11 in the diagram.
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intracellularly is observed in Pofut1-null somites [49,50].

By contrast, Pofut1-null inner ear cells [51], endo-

cardium [46], and HSC [52] exhibit substantially reduced

Notch signalling, but were shown in the latter two cases

to express NOTCH1 at the cell surface equivalently to

wild type.

Several groups have addressed the requirement for

O-fucose versus POFUT1 by examining mutants

unable to synthesize GDP-fucose (GDP-Fuc), the

nucleotide sugar substrate of POFUT1. In the mouse,

homozygous embryos that cannot make GDP-fucose

are rescued by maternal GDP-Fuc to varying degrees

[53,54]. Homozygous mutants that are born have

greatly reduced myeloid and lymphoid cells showing

that POFUT1, which is present at normal levels, can-

not rescue Notch signalling by chaperone activity. In

Lec13 CHO cells which have very low levels of GDP-

fucose, Notch receptors are well expressed at the cell

surface, but Notch ligand binding and ligand-induced

Notch signalling are markedly reduced, whereas

POFUT1 levels are unaltered [44]. In Drosophila,

embryos unable to synthesize GDP-Fuc do not show

typical Notch neurogenic defects as observed if Ofut1

is mutated, but die as first instar larvae, suggesting

that O-fucose is required as a substrate of Fringe [42].

However, loss of GDP-Fuc synthesis in large areas of

the wing reveal Fringe-independent Notch signalling

defects [55]. Similar experiments reveal a temperature-

sensitive loss of Notch signalling during neurogenesis

in Drosophila mutants that cannot make GDP-Fuc

[43]. At 30 °C, Notch lacking O-fucose is unable to

signal, whereas signalling is normal at 25 °C. Loss of

GDP-Fuc from mouse HSC leads to a reduction in self

renewal, and an altered ability to occupy the bone

marrow niche [56]. Thus, it is apparent that OFUT1/

POFUT1 present at normal levels is unable to rescue

Notch signalling in several in vivo contexts in which

Notch does not carry O-fucose glycans, but is

1POFUT1 38826
RDEF

DiseaseEnzyme Location Refs

p.Glu144* c.430G→T
p.Lys161Serfs*42 c.482delA;
-- c.246+5delG
p.Ser162Leu c.485C→T
-- c.430-1G→A

DDD4

LFNG 3799 29
p.Phe188Leu c.564C→A
p.Trp195Arg c.583T→C 
p.Thr281Lys c.842C→A
p.ala16Argfs*135 c.44dupG 

SCDO3

POGLUT1 392
KTEL

1 23
DDD2

pTrp4* c.11G→A
p.Arg69* c.205C→T
p.Gly170Glu c.509G →A
p.Arg132* c.394C→T
p.Ser212* c.635C→G
p.Arg218* c.652C→T
-- c.798-2A→C
p.Arg279Trp c.835C→T
p.Arg279Profs*3             c.833_834insC
p.Cys286Tyr c.857G → A
p.Gly342Glufs*22 c.1023_1025delG
p.Asp233Glu c.699T→G

EOGT 527
HDEL

1 18
AOS4

p.Trp207Ser c.620G→C
p.Arg377Gln c.1130G→A
p.Gly359Aspfs* c.1047delA

LGMD2Z

HS-DDD4

ER

ER

Golgi

ER 75–77
79

78
102,103

123–126

134–136
127

Fig. 2. The human mutations and pathologies associated with glycosyltransferases that modify Notch receptors. The diagram of each

glycosyltransferase represents protein size, with the signal peptide or transmembrane domain identified by a grey box and each ER

retention sequence given at the C-terminus. The human mutations identified so far are mentioned below each protein diagram, with the

corresponding pathologies referred to in the disease column.
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nevertheless expressed at the cell surface. Therefore,

broad generalizations about OFUT1/POFUT1 as a

Notch chaperone required for cell surface expression

of Notch cannot be made, since cellular context is

clearly of utmost importance in determining effects on

Notch receptor trafficking when OFUT1/POFUT1 is

enzymatically inactive or absent.

While ligand-induced Notch signalling assays reveal

that O-fucose glycans regulate the strength of Notch

signalling, and flow cytometry and surface plasmon

resonance assays reveal effects on the binding of dif-

ferent Notch ligands, such assays do not address

whether O-fucose glycans on Notch receptors physi-

cally interact with Notch ligands. However, recent X-

ray studies have begun to elucidate mechanistic roles

for O-fucose in Notch receptor-ligand binding. Thus,

co-crystals of NOTCH1 EGF11–13 with a Delta-like

4 (DLL4) N-terminal ECD fragment identified pre-

cisely how the O-fucose on EGF12 of NOTCH1 inter-

acts directly with the module at the N-terminus of

Notch ligands (C2 domain) of DLL4 [57]. The authors

propose that the fucose functions as a 21st amino

acid. Subsequently, they solved co-crystals of a larger

NOTCH1 fragment (EGF8-EGF12) and a JAG1 N-

terminal ECD fragment [58]. In this case, they

observed not only interactions with the O-fucose in

NOTCH1 EGF12 with the C2 domain of JAG1, but

also between EGF3 of JAG1 and the O-Fuc in EGF8

of NOTCH1, thereby extending the ligand binding

domain of NOTCH1. This finding was consistent with

the effects of a mutation in Drosophila Notch EGF8

that affects Serrate-induced, but not Delta-induced,

Notch signalling [59]. Co-culture assays using engi-

neered forms of Notch receptors and ligands have fur-

ther defined mechanisms by which DLL1, DLL4 and

JAG1 regulate Notch signalling [60,61]. Single-cell

reporter assays showed that DLL1 stimulates Notch

signalling in a pulsatile fashion, whereas DLL4 stimu-

lates in a sustained manner [61]. These differences lead

to different cell fate outcomes – DLL1-induced Notch

signalling promotes myogenesis, whereas DLL4-

induced signalling inhibits myogenesis [61,62]. Such

assays elegantly dissect the Notch signalling pathway

and reveal the critical necessity of optimal regulation

of Notch signalling strength. Too much, or too little

Notch signalling may each have deleterious conse-

quences.

The O-fucose modification on Notch may be elon-

gated to form a disaccharide, trisaccharide or tetrasac-

charide by the sequential addition of GlcNAc,

galactose (Gal) and N-acetylneuraminic acid (NeuAc)

respectively [25,27]. Fringe adds GlcNAc to O-fucose

on properly folded EGF repeats at highest efficiency

[25,63]. Drosophila has a single Fringe, but there are

three homologues in mammals – Lunatic (LFNG),

Manic (MFNG) and Radical (RFNG) [64]. In vitro

assays of recombinant enzymes show mouse LFNG to

be the most active [65]. Co-culture Notch reporter

assays and ligand binding assays revealed the

important role of GlcNAc addition to O-fucose in

promoting Delta binding to Notch receptors and

Delta-induced Notch signalling, while simultaneously

inhibiting Jagged binding to Notch and reducing

Jagged-induced Notch signalling [25,36,38,44,66–69].
Mosaic experiments in Drosophila showed that

removal of Fringe from Notch ligand-expressing cells

of the wing disc did not alter ligand ability to induce

Notch signalling [24]. Co-culture assays with CHO

cells expressing a Notch reporter with or without

LFNG, MFNG or RFNG, or inducible DLL1 or

JAG1, showed that Fringe modification in cis (i.e. in

the Notch expressing cell) promotes cis inhibition of

Notch signalling by DLL1, but weakens cis inhibition

by JAG1 in the cases of LFNG and MFNG, whereas

RFNG promotes cis inhibition by DLL1 and JAG1

alike [60]. These effects are similar to the effects of

Fringe on Notch signalling in trans. It will be most

interesting to see co-crystals of NOTCH1 and Notch

ligand fragments with O-fucose plus GlcNAc to gain

molecular insights into the different effects of Fringe

on Delta versus Jagged binding. Modelling GlcNAc

into the DLL4/NOTCH1 fragment crystal structure

predicts specific amino acid interactions [57]. Binding

to both DLL1 and JAG1 is increased when the O-

fucose in EGF12 of the NOTCH1 EGF11–13 frag-

ment is elongated by Fringe [70]. A Fringe code has

been proposed based on the differential modification

of NOTCH1 EGF repeats by LFNG versus MFNG

or RFNG, and the consequences for Notch ligand

binding and Notch signalling in human embryonic

kidney (HEK)-293T cells [29]. However, these results

come from overexpressed transfected Fringe genes in

cultured cells. It will be interesting to determine

whether a Fringe code leads to functional conse-

quences in vivo in mice expressing only a single Fringe

[71]. Elongation of O-Fuc-GlcNAc by Gal was shown

to be necessary for optimal Notch signalling in CHO

cell reporter assays, whereas the further elongation of

Gal by NeuAc appears to be dispensable for Notch

signalling [38,72].

In vivo consequences of defective O-fucose

glycan synthesis or loss of O-fucose sites

In Drosophila, expression of Ofut1 is regulated during

embryonic development and Ofut1 is differentially
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expressed in adult tissues. Loss or suppression of

Ofut1 in Drosophila results in phenotypes similar to

those of Notch pathway mutants such as lateral inhibi-

tion in the nervous system, and cell lineage decisions

in sensory organ precursor cells [37,39]. Expression of

Ofut1 with no or low fucosyltransferase activity

(Ofut1R245A) rescues fringe-dependent neurogenesis in

Drosophila embryos [42]. Loss of Pofut1 in mice is

embryonic lethal [50,73], as are Pofut1R245A homozy-

gotes due to degradation of the mutant enzyme [49].

These mice show the characteristic phenotype associ-

ated with defective Notch signalling, including growth

retardation, due in part to disrupted somitogenesis,

vascularization defects, and defects in neural tube for-

mation. Pofut1 null embryos share phenotypes not

only with Notch receptor null mice, but also with

Notch downstream effector-deficient mice. Therefore,

only conditional deletion of Pofut1 can be used to

study requirements for O-fucose glycans in Notch sig-

nalling in different cell types. Alternatively, mutation

of O-fucose sites in the EGF repeats of Notch recep-

tors or Notch ligands has been used.

Conditional deletion of Pofut1 in bone marrow

cells and stroma with Mx1-Cre causes cell-fate

defects in lymphoid and myeloid cell differentiation.

Cells lacking POFUT1 exhibit no Notch ligand bind-

ing but only a slight decrease in cell surface expres-

sion of NOTCH1 and NOTCH2 receptors [45].

Residual Notch signalling occurs in these bone mar-

row cells, since deletion of the Notch downstream

effector RBP-Jj via the same method gave a more

severe phenotype [52,74]. Similarly, deletion of Pofut1

in the endocardium via Nfatc1-Cre is less severe than

deletion of Notch1 by the same strategy [46]. Residual

DLL4-induced Notch signalling in this case allowed

the identification of angiogenic precursor cells

involved in coronary arteriogenesis. Yet another

example in which conditional deletion of Pofut1 gives

a milder phenotype than deletion of Notch1 is dele-

tion via Pax2-Cre in the inner ear [51]. These exam-

ples were unexpected given that the Pofut1-null

embryonic phenotype is similar to that of a Notch1-

null. Deletion of Pofut1 in intestinal epithelium by

Villin-Cre [75] or in bone marrow by Mx1-Cre [45]

has milder consequences than deleting RBP-Jj in the

same manners [52,76]. In contrast, deletion of Pofut1

in lung [77] or skin [78] gives severe Notch signalling-

defective phenotypes.

In humans, several heterozygous autosomal domi-

nant mutations, and a homozygous recessive mutation

in the POFUT1 gene, have been associated with dis-

ease (Fig. 2). Pigmentation defects are characteristic of

the autosomal dominant mutations which give rise to

a syndrome termed Dowling-Degos Disease 4 (DDD4)

[79–81]. A recently identified heterozygous mutation in

POFUT1, associated with DDD4 is also accompanied

by Hidradenitis Suppurativa (HS) which is marked by

recurrent painful nodules and abscesses [82]. A

homozygous recessive mutation in POFUT1 ablates a

N-glycan site and is correlated with more severe devel-

opmental defects [83]. However, the loss of the N-gly-

can is not the basis of the reduced activity of

POFUT1. Rather, it seems that Ser162 in the Asn-

Lys-Ser N-glycan sequon cannot be replaced by Leu,

though it can be replaced by Gln, a change that appar-

ently enhances POFUT1 activity. Enhanced POFUT1

activity has been associated with tumour progression

and increased Notch signalling in liver cancer [84].

Since POFUT1 may modify ~ 100 different proteins

that contain appropriate EGF repeat(s), it is also

important to determine functions of O-fucose by

mutating O-fucose sites in POFUT1 substrates.

Removal of the O-fucose site in EGF12 of Drosophila

Notch (N-EGF12f) revealed that the O-fucose glycan

is important for inhibiting Serrate-induced Notch func-

tions in the wing disc, and binding of Delta and Ser-

rate to N-EGF12f was enhanced [85]. This is

surprising considering the crystal structures showing

the key role of NOTCH1 EGF12 O-fucose in mam-

malian DLL4 and JAG1 binding [57,58]. The Notch1

[12f] mutation in mouse causes reduced ligand binding

to thymocytes, but no apparent effects on viability or

fertility [86]. However, Notch signalling is compro-

mised in Notch1[12f/12f] mice, as reflected by the cell-

autonomous reduction in T cell development. Point

mutations have also been introduced into Notch

ligands DLL1 [87] and DLL3 [88]. Only in the case of

DLL3 did elimination of two O-fucose sites in EGF2

and EGF5 have a functional effect, in that a mutant

transgene could not rescue somitogenesis in Dll3 null

embryos. It will be important to perform this experi-

ment by mutating the endogenous Dll3 gene and

replacing the O-fucose Ser/Thr with the alternative

(Thr/Ser) that could receive a fucose, as well as with

amino acids other than Ala that cannot be O-fucosy-

lated. DLL1 has four EGF repeats that receive O-

fucose but DLL1 expressed in Pofut1-null presomitic

mesoderm or mouse embryo fibroblasts was localized

to the cell surface and stimulated Notch signalling

[87]. In contrast, experiments with intestinal cells

showed that Paneth cells have slightly reduced cell sur-

face expression of DLL1 and DLL4 when RFNG is

absent, and cells from cultured intestinal organoids

have reduced DLL1 on the cell surface after knock-

down of Lfng [89]. Lfng knockout mice have reduced

DLL1 and DLL4 on the surface of goblet cells, whose
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numbers are increased due to a reduction in Notch sig-

nalling in the absence of Lfng [89]. Thus, depending

on cellular context, cell surface expression of Notch

ligands may be promoted by Fringe modification.

Elongation of O-fucose with a GlcNAc transferred

by Fringe is critical for development in Drosophila and

in mammals [90]. While there are three Fringe homo-

logues in mammals, numerous studies reveal a domi-

nant role for Lfng [91–93]. Mice lacking Lfng display

severe defects in somitogenesis [91,94,95], reproduction

[96,97], and T cell and B cell development [71,98,99].

However, genetic background affects survival and long-

evity of Lfng-null mice [71,91]. The dominance of Lfng

is clearly observed in retinal angiogenesis, in which all

three Fringe homologues are expressed by tip cells of

the growing angiogenic front [100]. Deletion of Lfng

causes excess vessel sprouting, despite the continued

expression of Mfng and Rfng. Lfng is proposed to pro-

mote DLL4-induced Notch signalling in tip cells, and

to inhibit JAG1-induced Notch signalling in stalk cells,

thereby promoting selection of tip cells [101]. An addi-

tive role of Lfng and Mfng occurs in marginal zone B-

cell development and in T-cell development

[71,102,103]. In fact, each Fringe gene expressed in the

absence of the other two can rescue altered T and B cell

development compared to triple Fringe knockout mice

[71]. Fringe regulates Notch signalling based on differ-

ential interactions between Notch modified by Fringe

with Delta-like versus Jagged Notch ligands. Fringe

may also promote the cell surface expression of Delta-

like ligands [89]. A role for the addition of Gal to

Fringe-modified Notch receptors was observed in B4-

galt1 null embryos which exhibit reduced expression of

several Notch target genes during somitogenesis [104].

A patient with a mutation in B4GALT1 had severe neu-

rological defects and other pathologies consistent with

reduced Notch signalling [105].

Human mutations in LFNG give rise to spondylo-

costal dysostosis [106,107], but no mutations in MFNG

or RFNG have yet been associated with any human

pathology. However, upregulation of MFNG has been

correlated with tumour progression in claudin-low

breast cancer, due to increased Notch signalling and

the induction of PI3KCG [108]. In contrast, loss of

Lfng which suppresses JAG1-induced NOTCH1 sig-

nalling in mammary epithelium, in cooperation with

MET/CAVEOLIN gene amplification, promotes basal-

like breast cancer [109]. LFNG also functions as a

tumour suppressor in melanoma metastasis [110], and

in mouse models of pancreatic [111] and prostate can-

cer [112]. These results reveal fundamental roles of

Fringe in regulating Notch signalling. Further studies

will help better elucidate different functions of the

three fringe homologues in mammals.

O-glucose glycans

Discovery and cell-based assays

Bovine blood coagulation factors VII and IX, were the

first proteins identified with an O-glucose modification

on EGF repeats [113]. O-glucose was subsequently iden-

tified on NOTCH1 in CHO cells [27]. O-glucose was

also found extended by xylose in a1,3-linkage, or by

two xylose moieties to form a trisaccharide [114]. In

Drosophila, only one enzyme has been identified as a

glucoside xylosyltransferase (GXYLT) termed Shams

[115], whereas in mammals, the addition of the first

xylose is mediated by GXYLT1 or GXYLT2, and the

second xylose is added in a1,3-linkage by xylose xylosyl-

transferase 1 (XXYLT1) [114,116]. A Drosophila Xxylt1

was recently identified and shown to repress Delta-

Notch signalling [117]. Thus, loss of Drosophila Xxylt1

was found to promote Delta-Notch signalling in an

appropriately sensitized genetic background. The con-

sensus site for O-glucose addition to most EGF repeats

of Notch receptors and ligands is C1xSxA/PC2, where

C1 and C2 are the first and second cysteines of the EGF

repeat, S is the Ser that accepts glucose, x is any amino

acid, P is Pro and A is Ala [118,119] (Fig. 1). Mass spec-

trometric analysis of Drosophila NOTCH1 ECD from

S2 cells and NOTCH isolated from Drosophila embryos

demonstrated the presence of O-glucose on all predicted

18 sites. However, O-glucose-xylose disaccharide was

found only on EGF13–20 and EGF25. Similarly, the

trisaccharide was found on a restricted subset of the

EGF repeats with O-glucose [28]. Both the addition of

O-glucose and its elongation by xylose is dependent on

the amino acids in the consensus site and the proper

folding of the EGF repeat [120]. The O-glucosyltrans-

ferase is encoded by Rumi in Drosophila [121] and the

protein O-glucosyltransferase 1 gene Poglut1 in mam-

mals [122]. POGLUT1 is an ER resident enzyme [121].

In vitro knockdown of Rumi in Drosophila S2 cells and

mammalian cell lines reduces Notch signalling due to

defects in Notch receptor cleavage upon ligand binding.

However, loss of O-glucose glycans does not reduce

Notch ligand binding. Thus, O-glucose glycans appear

to promote a conformational change in Notch receptors

after ligand interaction, and are required for S2 cleavage

by ADAM proteases [123,124]. Furthermore, crystal

structures of a NOTCH1 ligand-binding fragment

bound to a N-terminal fragment of DLL4 demonstrate

that O-glucose on EGF12 and EGF13 are located away
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from the DLL4 binding face, and cover hydrophobic

residues Pro and Phe in these EGF repeats [57], hence

supporting the notion that O-glucose is not required for

Notch-ligand interactions. The presence of a novel, O-

linked hexose attached to Ser in EGF11 at a site which

does not match the consensus of an O-glucose site was

revealed in crystal structures [57,125]. This modification

is conserved in other Notch receptors, except NOTCH2,

at the consensus site C3xNTxGSFxC4. The hexose was

recently identified as a glucose residue which is added

by POGLUT2 or POGLUT3, homologues of

POGLUT1 [126]. Mutations of single O-glucose sites in

NECD do not affect the cell surface expression of

Notch, nor impair Notch activation, except for muta-

tion in EGF28 [15,127]. Although, the O-glucose con-

sensus site in EGF28 is present in mammalian

NOTCH1, and not present in Drosophila Notch or

other mammalian Notch receptors, mutation of Ser to

Ala in EGF28 of NOTCH1 causes a decrease of Delta-

induced Notch signalling, but does not affect signalling

mediated by Jagged ligands. Deletion of Poglut1 in

HEK-293T cells causes a mild reduction in cell surface

expression of NOTCH1, and enhanced secretion of sol-

uble NECD, suggesting that O-glucose glycans con-

tribute to trafficking or stability of Notch receptors [47].

Mutation of the O-glucose site in EGF11 to Ala has no

effects on cell surface expression of NOTCH1, DLL1

binding or DLL1-induced NOTCH1 signalling [126].

However, the combined mutation of EGF11 and the O-

fucose site in EGF8 or EGF12 of NOTCH1 has some-

what greater effects than the single O-fucose mutations.

It would be interesting to see if cells lacking both

POGLUT2 and POGLUT3, but retaining Ser in

EGF11, give the same results with NOTCH1 carrying

the EGF8 or EGF12 O-fucose mutations.

In vivo consequences of defects in O-glucose

glycan synthesis or loss of O-glucose sites

Loss of Rumi from Drosophila results in temperature-

sensitive Notch signalling defects [121]. Rumi-null flies

are viable at 18 °C but exhibit a slight Delta wing vein

phenotype. However, at 28 °C lethality occurs at the

larval stage, and reduced Notch signalling is observed

in all contexts studied. O-glucose on Notch in flies is

critical for S2 cleavage of Notch but ligand binding

remains unaffected. Furthermore, rumi mutant G189E

lacking transferase activity did not rescue defective

Notch signalling in rumi null flies, suggesting the impor-

tance of O-glucose glycans to Notch receptor trafficking

and stability at the cell surface. Multiple mutations in

O-glucosylation sites on NECD were essential for tem-

perature-sensitive Notch signalling defects to arise,

whereas single-site mutations did not affect Notch sig-

nalling [127]. Poglut1�/� mice are embryonic lethal and

die before E9.5 with severe defects in neural tube devel-

opment, cardiogenesis and somitogenesis [122]. Poglut1

null mutants die earlier than Notch pathway null

mutants, apparently due to the loss of O-glucose from

CRUMBS2 [122]. Haploinsufficiency of Poglut1 on a

Jag1 heterozygous background results in decreased O-

glucosylation of NOTCH1 and severe defects in bile

duct morphogenesis, suggesting a genetic interaction

between Poglut1 and members of the Notch signalling

pathway [123]. Additionally, mutations in human

POGLUT1 cause an autosomal dominant form of

Dowling-Degos Disease termed DDD2 [128–131], or a

recessive limb-girdle muscular dystrophy [132].

O-GlcNAc glycans

Discovery and cell-based assays

The presence of O-GlcNAc on EGF repeats of Notch

receptors was first identified in S2 cells on a Drosophila

NECD fragment containing EGF20 [133]. O-GlcNAc

is added to Ser/Thr between the fifth and sixth cys-

teines of an EGF repeat with the consensus site C5xxG

(Y/F)(T/S)Gx2–3C
6 [20,133–135]. Of the 36 EGF

mouse NOTCH1 repeats, 17 have a consensus site for

O-GlcNAc and Drosophila Notch has 18 consensus

sites. However, mass spectrometry on Notch purified

from S2 cells and Drosophila larvae identified O-

GlcNAc on only five sites [28]. In mammalian cells, O-

GlcNAc can be further elongated by Gal [134] and

probably sialic acid. The enzyme responsible for the

addition of O-GlcNAc on EGF repeats was identified

in Drosophila as EGF-domain-specific O-GlcNAc-

transferase (EOGT). EOGT is conserved across species

and is localized to the ER by a signal peptide at the N

terminus and a C-terminal KDEL sequence [134].

Studies using knockdown and knockout of Eogt in

mammalian cell lines suggest that O-GlcNAc on Notch

receptors promotes Delta-mediated Notch signalling,

but does not significantly affect JAG1-induced Notch

signalling [136]. Loss of EOGT inhibits binding of

Delta-like ligands but not JAG1, suggesting that O-

GlcNAc on Notch plays specific roles in Notch ligand

binding and Notch signalling [136].

In vivo consequences of defects in O-GlcNAc

glycans and loss of O-GlcNAc sites

Loss of eogt in flies results in lethality, mostly during

second instar larval development, with a few survivors

at the early third-instar stage [134,135]. However,
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larvae lacking eogt do not show a phenotype similar

to flies with Notch-deficient signalling. Knockdown of

eogt in the fly wing results in blistering that may arise

from roles for O-GlcNAc on Dumpy, an extracellular

matrix protein with a large number of EGF repeats.

Ligand-induced Notch signalling promotes blistering

when Notch lacks O-GlcNAc because the phenotype is

partially rescued with the loss of one allele of Notch or

Notch pathway members such as Delta or Serrate that

reduces Notch signalling, suppressor of hairless (Su(H)

or maml) [135]. Such genetic interaction studies pro-

vided the first link between Notch signalling and Eogt

which has now been validated in mammalian cells and

mice. In the mouse, Eogt expression is enhanced in the

presomitic mesoderm at E9.5, and limited to the digits

of developing limbs by E12.5 [137]. Eogt null mice are

viable, fertile and do not show a typical Notch pheno-

type [136]. Using retinal angiogenesis as a sensitive

assay for ligand-induced Notch signalling [100], defec-

tive angiogenesis with leaky blood vessels is observed

in mice lacking Eogt [136]. Loss of Eogt results in

increased blood vessel branching and increased tip cell

numbers, which is characteristic of disrupted DLL4-

NOTCH1 signalling Thus, in retinal angiogenesis, loss

of Eogt recapitulates results in cell lines and reveals

the importance of O-GlcNAc in promoting optimal

Delta-induced Notch signalling. In humans, mutations

in EOGT cause a rare, congenital disorder termed

Adams-Oliver Syndrome 4 (AOS4) [137–139]. Symp-

toms include cutis aplasia of the scalp, defects in the

development of digits, vascular defects and, in some

cases, cardiac defects. Autosomal dominant mutations

in NOTCH1, DLL4 and RBPJ genes have also been

identified in patients diagnosed with AOS [140–143].

Synergistic and redundant roles for O-
fucose and O-glucose glycans

While the majority of studies to date have focused on

understanding the functions of each type of O-glycan

independently, a few studies have investigated roles for

O-glucose and O-fucose glycans together. In Droso-

phila, loss of O-fucose or O-glucose separately causes

temperature-sensitive Notch signalling defects that

manifest at 30 °C [43]. However, at 25 °C each mutant

behaves essentially like wild type. When, however,

both O-fucose and O-glucose glycans are not trans-

ferred to Notch, Notch signalling is lost at 25 °C. This
correlates with accumulation of Notch in the ER,

whereas loss of O-fucose or O-glucose alone allowed

exit of Notch from the ER. Thus O-glucose and O-

fucose glycans function synergistically to support

Notch trafficking out of the ER in Drosophila. Consis-

tent with this, in mammalian cells in which both

POFUT1 and POGLUT1 were deleted to give

NOTCH1 lacking both O-fucose and O-glucose gly-

cans, NOTCH1 was not expressed well at the cell sur-

face, whereas loss of either O-glycan alone allowed cell

surface expression of NOTCH1 [47]. In another study,

the presence of xylose in O-glucose glycans was also

found to contribute to Notch trafficking and Notch

signalling in Drosophila but only in the context of a

double mutant [144]. Thus, Notch lacking both O-

fucose and the dixylose on O-glucose was mislocalized

from the apical plasma membrane to adherens junc-

tions, and had reduced Notch signalling [144]. Notch

lacking O-glucose (including dixylose) and O-fucose

was not exported from the endoplasmic reticulum.

Thus, some functions of sugars (e.g. dixylose) may

only be observed in the absence of a compensatory

sugar (e.g. O-fucose), and this may in turn depend on

cellular context.

Conclusions

It is apparent from studies published over the past

18 years that distinct O-glycans on Notch receptors

are essential for regulating and optimizing different

aspects of Notch signalling. O-glucose glycans on

Notch positively regulate the cleavage of Notch recep-

tors upon ligand binding, and promote receptor traf-

ficking to the cell surface, but do not directly mediate

interactions with Notch ligands. However, extension of

O-glucose by xylose negatively regulates Notch sig-

nalling, in a context dependent manner. O-fucose gly-

cans influence Notch signalling by differentially

regulating Notch ligand binding to Delta and Jagged

ligands. In Drosophila and certain numerous mam-

malian cell types, POFUT1 is important for promoting

Notch receptor trafficking to the cell surface. How-

ever, in mammalian cells lacking POFUT1 NOTCH1

and other Notch receptors are well expressed at the

cell surface but do not bind Notch ligands or exhibit

ligand-induced Notch signalling. The addition of

GlcNAc to O-fucose by Fringe differentially modulates

Notch receptor interactions with the various ligands.

LFNG and MFNG generally promote Delta ligand

binding and inhibit Jagged ligand binding, whereas

RFNG promotes both Delta and Jagged ligand bind-

ing. The more recently identified O-GlcNAc modifica-

tion on Notch appears to mediate Notch signalling via

Delta but not Jagged ligands based on both cell-based

and in vivo studies. Mutations in several of the glyco-

syltransferases that synthesize the O-glycans on Notch

receptors cause a variety of defects in Notch signalling,
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establishing the biological importance of O-glycans in

regulating and optimizing the strength of Notch sig-

nalling. Human mutations in several glycosyltrans-

ferase are associated with different pathologies, which

are also associated with mutations in Notch and

Notch pathway members. The ExAc browser [145]

describes exon sequencing data from 60 706 unrelated

individuals, not including people with known congeni-

tal mutations, and reports single-nucleotide mutations

including missense and nonsense mutations in the dif-

ferent glycosyltransferase genes described above. A few

healthy people with homozygous missense mutations

have been reported, indicating that these mutations are

not important for the activity of the relevant glycosyl-

transferase. While the majority of studies to date have

focused on understanding the roles of each type of gly-

can independently, a few studies have revealed syner-

gistic and redundant roles of O-glucose and O-fucose

glycans. Future efforts should continue along this line

of inquiry to reveal how all the O-glycans on Notch

receptors and ligands work separately and together to

optimize Notch signalling. These studies will reveal

synergistic, redundant and nonoverlapping functions

of the glycans which will further help to elucidate how

O-glycans on Notch regulate diverse cell fate decisions.

Insights from these studies will help to design potential

targets for therapeutic purposes.
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