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 Introduction 

 Attention-deficit/hyperactivity disorder (ADHD) re-
fers to an early-onset highly prevalent neurobehavioral 
disorder with genetic, environmental and biological eti-
ologies,  which persist into adolescence and adulthood in 
a majority of symptomatic children of both genders (40–
60%)  [1] . Although ADHD is perceived by some as an 
American disorder, its prevalence is in the same range 
worldwide  [2] , estimated to affect 5–10% of children  [2]  
and 4% of adults  [3, 4] . It is characterized by behavioral 
symptoms of inattention, hyperactivity and impulsivity 
across the life cycle  [5] . An emerging neuroimaging lit-
erature has provided strong evidence linking ADHD 
with deficits in key brain regions subserving attention 
and executive functions. Although neuroimaging studies 
have fundamentally contributed to the documentation of 
the validity of ADHD as a brain disorder, a conceptual 
framework providing a neural systems neuroanatomy of 
this disorder has been lacking.

  Whereas the vast majority of publications in neuroim-
aging relate to structural and functional alterations of in-
dividual structures, there has been limited analysis of 
how these structures are organized as altered networks 
within the brain of persons with ADHD. The neural sys-
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 Abstract 

 Convergent data from neuroimaging, neuropsychological, 
genetic and neurochemical studies in attention-deficit/hy-
peractivity disorder (ADHD) have implicated dysfunction of 
the dorsolateral prefrontal cortex (DLPFC) and dorsal ante-
rior cingulate cortex (dACC), which form the cortical arm of 
the frontostriatal network supporting executive functions. 
Furthermore, besides the DLPFC and dACC, structural and 
functional imaging studies have shown abnormalities in key 
brain regions within distributed cortical networks support-
ing attention. The conceptualization of neural systems biol-
ogy in ADHD aims at the understanding of what organizing 
principles have been altered during development within the 
brain of a person with ADHD.   Characterizing these neural 
systems using neuroimaging could be critical for the de-
scription of structural endophenotypes, and may provide 
the capability of in vivo categorization and correlation with 
behavior and genes.  Copyright © 2009 S. Karger AG, Basel 
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tems organization approach addresses at least 3 ques-
tions. The most basic of these questions is whether the 
structures shown to be altered in ADHD are indeed com-
ponent parts of well-understood neural systems. Another 
critical question is whether these structural neural sys-
tems correlate with specific behaviors. Thirdly, a key 
question pertains as to whether these neural systems are 
associated with specific genotypes.

  Historical Background of Brain Dysfunction 

Hypotheses in ADHD 

 ADHD was first described more than 100 years ago 
under the name ‘hyperactivity’ or ‘hyperkinesis disorder 
in childhood’ found mainly in boys  [6] . In the 1960s it 
was renamed with the now outmoded terms ‘minimal 
brain damage’ or ‘minimal brain dysfunction’ suggesting 
that this could be a brain disorder. However, it was ac-
tually in the 1970s that neuropsychological studies of 
ADHD sparked a renaissance of interest in this child-
hood-onset malady when the feature of inattention was 
first introduced as its central defining feature  [7] . The 
work of Douglas  [7]  demonstrated deficits on sustained 
attention tasks, such as the continuous performance test, 
replicated many times subsequently  [8] . The renaming of 
the disorder and the focus on ‘attention’ led to a more fo-
cused analysis of the brain localization of attention defi-
cits  [9, 10] , a drive catalyzed by novel insights in the neu-
rological bases of attention  [11–14] . This conceptual evo-
lution led to an ever increasing number of studies over the 
past 2–3 decades designed to elucidate the brain basis of 
ADHD.

  Symptom Basis for ADHD and Early Brain 

Localization Models 

 The diagnosis of ADHD is formulated upon develop-
mentally inappropriate symptoms of inattention, impul-
sivity and motor restlessness, which are discernible be-
fore age 7 years, pervasive across situations and persistent 
to a large extent throughout adolescence and adulthood 
 [5, 15] . The similarities that ADHD bears with certain 
neurological patients, have led to the hypothesis that 
ADHD is a brain disorder affecting the prefrontal cortex 
 [10] . Based on the success of stimulant medications in 
humans and animal experimentation, the ‘frontostriatal’ 
model implicating dopamine pathways  [16]  suggested 
that amelioration of dopaminergic and noradrenergic 

functions is necessary for the clinical efficacy of pharma-
cologic treatment of ADHD  [17] . Current insights em-
phasize the role of attentional and executive function 
(EF) difficulties in this disorder  [18–20] . Although its eti-
ology remains unclear, its strong familial nature  [21, 22]  
and high levels of heritability (0.77)  [23]  strongly support 
a genetic etiology. The broad outlines of the etiology and 
pathophysiology of ADHD are depicted in  figure 1 .

  Our understanding of the neuroanatomy of ADHD 
stems from the conceptualization of ADHD as a brain 
disorder of multifactorial etiology. ADHD is hypothe-
sized to be a result of genetic and perinatal environmen-
tal factors whose effects unfold across development. The 
resulting pathophysiology is marked by dopaminergic 
and noradrenergic dysregulation, as well as structural 
and functional abnormalities in cortico-cortical and 
fronto-subcortical pathways  [5] , including the striatum 
and cerebellum. The evidence supporting this model of 
ADHD is strong as there are well-developed biological 
mechanisms that explain how they putatively cause 
ADHD ( fig. 1 ). It should also be noted that, because this 
empirical pathway is derived from studies largely com-
prised of male subjects, the neuropathophysiology of 
ADHD in females remains less well known.

  As described by Seidman et al.  [24]  and Valera et al. 
 [25] , the overwhelming majority of MRI studies of ADHD 
have been based almost solely on pediatric studies of boys 
with the disorder. While it is clear that putative biological 
risk factors are operant in the development of ADHD in 
females, uncertainties remain regarding how these fac-
tors express themselves through abnormal neuroanato-
my, and, if they do, how that profile may deviate from 
non-ADHD females or males with the disorder.

  Structural and Functional Neuroimaging in ADHD 

 Overview 
 Because to our knowledge there are no published tra-

ditional histopathological studies on ADHD  [26] , neuro-
imaging studies are key contributors to gaining insight 
into the neural bases of ADHD in humans. Structural 
imaging methods have localized abnormalities in key 
brain regions and neural networks associated with cogni-
tion and behavior consistent with the clinical picture of 
ADHD  [24, 25] . Similarly, functional neuroimaging stud-
ies have shown functional differences in the same regions 
 [27] .

  The neuroanatomy of ADHD is being actively investi-
gated in many laboratories around the world, including 
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ours. Convergent data from neuroimaging, neuropsy-
chological, genetic and neurochemical studies have im-
plicated dysfunction of dorsolateral prefrontal cortex 
(DLPFC) and dorsal anterior cingulate cortex (dACC) 
 [20, 24, 27–32] , which constitute the cortical arm of the 
frontostriatal network supporting EF. In addition to 
DLPFC and dACC, other regions within a distributed 
cortical network supporting attention have been identi-
fied including the posterior parietal cortex and centers at 
the temporo-occipito-parietal junction in the lateral sur-
face of the right hemisphere, primarily the angular (Brod-
mann area, BA, 39) and supramarginal (BA 40) gyri  [11, 
13, 14, 33–36] .

  A growing literature of magnetic resonance imaging 
(MRI)-based volumetric  [25, 37]  and cortical thickness 
 [38]  studies have identified abnormalities in the DLPFC, 
the fronto-orbital cortex (FOC), the anterior cingulate 
cortex (ACC), the inferior parietal lobule and the cortico-
striatal system, which are structures subserving attention 
and EF.

  Prefrontal Cortex 
 Prefrontal hypotheses of ADHD have principally im-

plicated the DLPFC and FOC cortices. DLPFC lesions are 
associated with organizational, planning, working mem-
ory and other executive dysfunctions, whereas FOC le-
sions are related to reward behavior, social disinhibition 
and impulse dyscontrol. Given the persistence of EF def-
icits in adults with ADHD, the DLPFC is likely affected. 
Furthermore, behavioral inhibition is thought to be a 
core deficit in ADHD, which is related primarily to or-
bital frontal dysfunction  [9] .

  Dorsal Anterior Cingulate Cortex 
 Another relevant cortical structure in ADHD is the 

dACC, which is currently considered to have a role in 
cognition and motor control, and to be involved in pro-
cesses underlying the arousal/drive state of the organism 
 [39, 40] . The dACC plays a role in complex cognitive op-
erations  [41]  such as target detection, response selection, 
error detection, action monitoring and reward-based de-
cision-making  [42–47] , functions that are thought to be 
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  Fig. 1.  Conceptual framework of the patho-
physiology and etiology of ADHD. 
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impaired in ADHD. Functional neuroimaging reports on 
normal subjects have shown that cognitive interference 
tasks such as the Stroop and Stroop-like tasks activate the 
dACC  [48] . Furthermore, the dACC has been shown to 
be functionally abnormal in adults with ADHD using the 
counting Stroop task  [28] , a continuous performance test 
 [49]  and response inhibition tasks  [50, 51] . In addition, to 
functional MRI abnormalities in the ACC, it has been 
shown that adults with ADHD have a smaller ACC vol-
ume than controls  [35] , and that the ACC in ADHD is 
significantly thinner than in matched controls  [36] . 
Moreover, 2 studies showed volumetric decreases on the 
right ACC in treatment-naïve children with ADHD rela-
tive to treated children with ADHD and controls  [52, 
53] .

  Inferior Parietal Cortex 
 The inferior parietal lobule is a multimodal associa-

tion area related to cognitive functions such as attention 
and language  [11, 54–69] . Humans with damage in the 
right caudal inferior parietal area, i.e. the angular gyrus 
(BA 39), usually exhibit severe impairment in spatial at-
tention referred to as hemi-inattention  [65, 67, 70, 71] , 
which is also one of the major behavioral manifestations 
of the neglect syndrome  [71] . Alternatively, humans with 
lesions in the left angular gyrus usually show some type 
of language impairment  [55, 56, 59, 60, 62, 63] . Common-
ly, these manifestations are associated with right-hand-
edness in humans  [61, 72] . Through its connections, the 
angular gyrus provides the prefrontal cortex with infor-
mation concerning the perception of the visual space as 
well as linguistic information. Similarly, the prefrontal 
cortex via bidirectional connections directed back to the 
posterior parietal region could provide a means by which 
it can regulate the focusing of attention in different parts 
of space. Sowell et al.  [31]  reported an increased size of 
cortex in the inferior parietal lobule of children and ado-
lescents with ADHD. This finding contrasts somewhat 
with the results of another study, which showed a de-
crease in cortical thickness of that region in adults with 
ADHD  [38] . However, volumetric and cortical thickness 
measures are distinct measures and may not correlate 
with one another, and Sowell et al.  [31]  did not specifi-
cally report cortical thickness measures.

  Corpus Striatum 
 The caudate, nucleus accumbens, putamen and glo-

bus pallidus are part of discrete distributed networks vi-
tal for executive functions. These networks include pre-
frontal/basal ganglia/thalamic loops  [73] . Damage to the 

corpus striatum is plausibly associated with the etiology 
of ADHD  [74] . Given its anatomic location at a border 
zone of arterial supply and its exposure to circulatory 
compromise, the striatum is vulnerable to perinatal hy-
poxic complications (which occur at higher than normal 
rates in ADHD)  [75] . Experimental lesions in the stria-
tum of animals produce hyperactivity and decreased 
performance in working memory and response inhibi-
tion tasks  [73] . Moreover, the corpus striatum is one of 
the important sources of dopaminergic synapses  [76] , 
and dopamine is relevant in the regulation of striatal 
functions. Finally, stimulant medications, usually em-
ployed to treat ADHD, have been shown to have effects 
on the corpus striatum  [77, 78] . A growing body of brain-
imaging investigations supports a role for the basal gan-
glia in ADHD. Most studies have shown significantly 
smaller total caudate or smaller caudate head, either on 
the left or right side  [29, 79–85] . Studies in children with 
ADHD have shown the globus pallidus to be smaller on 
the right  [80, 86]  or the left  [29, 81, 87] . Furthermore, 
Castellanos et al.  [29]  demonstrated that significant dif-
ferences between children with ADHD and controls in 
caudate volume diminished by the oldest age studied (19 
years), thus showing a ‘normalization’ of brain volume 
over time. This suggests that studies of adults will be nec-
essary to assess the persistence and stability of different 
anatomical changes in ADHD across the lifespan. Re-
cently, Seidman et al.  [37]  showed in a preliminary study 
of the nucleus accumbens that it is larger in adults with 
ADHD. Given the role of this structure in emotional and 
autonomic control, its volumetric alteration may be re-
lated to reward dysregulation as well as impulsivity pres-
ent in subjects with ADHD. Moreover, bilateral caudate 
volumetric decrease has been shown in treatment-naïve 
children with ADHD relative to treated children with 
ADHD and controls  [53] .

  Cerebellum 
 The cerebellum has also been shown by several groups 

to be structurally altered in ADHD. Specifically, volu-
metric reductions in lobules VIII, IX and X of the vermis 
have been observed in both ADHD boys  [80, 88–91]  and 
girls  [81, 90] . Bussing et al.  [89]  also found reductions in 
vermal lobules VI and VII. Furthermore, Castellanos et 
al.  [29]  found reductions in ADHD for all brain regions 
measured in a large group of 152 ADHD children and 
adolescents compared to 139 matched control subjects. 
However, when they adjusted for total cerebral volume, 
only the cerebellar volume differences remained signifi-
cant, which also correlated significantly and negatively 
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with measures of attentional problems. Durston et al.  [92]  
have corroborated the finding of a smaller cerebellum in 
a group of 30 ADHD children.

  White Matter 
 The presence of this array of abnormalities in the 

DLPFC, dACC, inferior parietal cortex, corpus striatum 
and cerebellum, and possibly FOC, raises a critical ques-
tion as to whether ADHD is a syndrome that may also 
involve disordered white matter (WM) connections link-
ing these structures. Indeed, there is currently evidence 
from MRI structural investigations that WM alterations 
are present in children, adolescents and adults with 
ADHD  [29, 37, 82, 86, 93, 94] . However, results are incon-
sistent so far. Whereas the studies conducted in children 
and adolescents with ADHD showed a reduction in over-
all WM volume  [29] , in adults with ADHD there was a 
trend toward an overall increase in WM volume  [37] . 
Furthermore, these studies considered the cerebral WM 
in its entirety without investigating specific fiber path-
ways or adopting a neural systems perspective. There is 
only 1 published study using diffusion tensor MRI (DT-
MRI) in children and adolescents with ADHD in which 
Ashtari et al.  [95]  conducted an investigation of a number 
of WM structural regions of interest, and found abnor-
malities within premotor, parieto-occipital, striatal and 
cerebellar regions.   Another study using DT-MRI, con-
ducted in adults with ADHD, addressed the issue of neu-
ral systems alterations in this subjects’ population and 
demonstrated abnormalities in such fiber pathways as 
the superior longitudinal fascicle II and the cingulum 
bundle, which are affiliated with the attention and EF 
systems  [96] . Whereas there is paucity of DT-MRI studies 
in ADHD, several investigations showing abnormalities 
of the corpus callosum have been reported in a number 
of morphometric studies of children with ADHD  [85, 90, 
97–100] . In these studies, different morphometric mea-
sures were used: some studies used 5 subdivisions follow-
ing the O’Kusky method  [101] ; others instead used the 7 
subdivisions in the approach of Witelson  [102] , making 
the results difficult to compare. Nevertheless, fairly con-
sistent results indicate that abnormalities in children 
with ADHD are localized particularly in the posterior 
regions linked to temporal and parietal cortices at the re-
gion of the callosal isthmus and splenium  [82, 85, 90, 
99] .

  In addition to the structures mentioned earlier, for 
which there is a convergence from different published 
studies, it has also been shown that other brain regions, 
such as the right posterior cingulate volume, are re-

duced in children with ADHD  [86] ,and also that in chil-
dren and adolescents with ADHD the hippocampus is 
enlarged bilaterally  [103] . The relevance of these find-
ings is not yet clearly understood, and future studies 
need to add insight regarding their meaning in the dis-
order.

  Developmental Considerations 
 Recently, Shaw et al.  [104]  addressed the question of 

whether ADHD is associated with a delay in typical brain 
maturation or a ‘complete deviation from the template of 
typical development’. This study examined a sample of 
223 children with ADHD and 223 controls, and used the 
age of attaining peak cortical thickness as a measure of 
cortical maturation. There was a significant difference in 
the median age by which 50% of the cortical points at-
tained peak thickness in the ADHD group compared to 
the controls (10.5 years and 7.5 years, respectively). This 
delayed effect was strongest in prefrontal regions. Despite 
the elegance of this work, it only covered brain develop-
ment until the age of 20 years. Since considerable brain 
development continues to occur beyond age 20 years, this 
work currently cannot answer the question as to the per-
sistence of delayed maturation or dysmaturations into 
adult life. One sense of the term ‘delay’ implies a transient 
phase of slowed development followed by ‘catching up’ to 
normal development. If such catching-up occurs, then at 
some point in adult life, persons with ADHD ought to 
have brain structures not significantly different than 
healthy controls. Another perspective on this question 
more generally was asked by Sowell et al.  [31] : ‘At what age 
during the human life span do different tissues stop “ma-
turing” and start “aging”?’  [31] . The answer to this latter 
question appears to be, on the one hand, that cortical 
change continues to occur across the life span, and that 
the developmental trajectories of change vary across 
structure and tissue types. On the other hand, certain 
gray matter structures, i.e. the late developing cortical 
structures, such as the DLPFC and posterior temporal 
regions, reach largely or completely mature levels by the 
mid-20s or 30 years of age. Furthermore, WM develop-
ment continues in a linear way into the fourth or fifth 
decade of life  [105] . Our own data thus far on adults av-
eraging about age 35 is that persistent cases retain struc-
tural alterations in the prefrontal cortex, dACC, inferior 
parietal lobule and cerebellum  [37, 38] , but this requires 
further replication as these studies thus far are comprised 
of small samples.
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  Neural Systems’ Neuroanatomy in ADHD 

 ADHD has been hypothesized to be due, in part, to 
structural defects in brain networks influencing cogni-
tive and motor behavior  [9, 38, 106] . Neural networks are 
dedicated to the performance of specific functions, and 
are assemblies of centers and the fiber tracts that inter-
connect them. In the central nervous system, besides per-
ception and motor activity, which principally engage the 
primary cortices and the thalamus, a set of emotional and 
higher brain functions are affiliated with the multimod-
al associative cortical areas as well as subcortical centers. 
The latter can be cognitive functions, such as executive, 
working memory, attention and language, or affective be-
haviors such as fear, happiness, impulsivity and sadness.

  Defining ADHD-Relevant Neural Networks 
 Below we describe a series of networks, including as-

semblies of gray matter structures and the fiber tracts 
that connect them, in the healthy brain. We focus on spe-
cific networks that are hypothesized to be impaired in 
ADHD, based in part on the literature we reviewed above, 
and linked to ADHD symptoms ( fig. 2 ). The functional 
neuroanatomy described below is organized by function 
(attention, EF, etc.).

   Attention.  The core of the attention network includes 
the lateral and medial prefrontal cortices, the lateral-in-
ferior parietal and temporo-occipito-parietal cortices in 
the surface of the right hemisphere  [12, 14, 34, 71, 107, 
108]  (i.e. middle and superior lateral frontal gyri, the in-
ferior parietal lobule including the angular and supra-
marginal gyri and the cingulate gyrus  [11, 13, 14, 33–36, 
57] ). The principal connecting fiber pathways are 3 sub-
components of the superior longitudinal fascicle (I, II and 
III), the cingulum bundle (CB) and the inferior longitu-
dinal fascicle  [109–117] . The splenium and the isthmus of 
the corpus callosum, involved in the transfer of informa-
tion across the hemispheres to parietal, temporal and oc-
cipital areas  [118]  and thalamic nuclei (including medial 
dorsal, reticular and pulvinar), are both involved in at-
tention, including sensory gating.

   Executive Functions.  EF allow a person to formulate 
goals and goal-directed plans and to carry them out ef-
fectively  [35, 36, 107, 119] . The EF circuitry principally 
involves prefrontal cortical and striatal regions  [120–
124] , as well as cortical limbic structures such as the ACC 
 [28, 51, 125] . Due to its connections, the ACC is critical 
for monitoring, balancing and deciding how and when to 
allocate cognitive control  [40, 42–47] . The principal fiber 
tracts mediating these connections are the CB and the 

corticostriatal projection bilaterally  [111, 114] . EF deficits 
are well documented in ADHD  [18, 126] .

   Motor Regulation (Cortico-Striatal and Cortico-Cere-
bellar) Circuitry.  This network consists of parallel circuits 
that subserve motor, cognitive and emotional behaviors. 
Makris et al.  [127]  proposed a mapping framework of the 
cortico-striatal system, within which caudate and puta-
men are complementary targets of the neocortical to stri-
atal projection  [128–144] . The caudate receives projec-
tions from the extrastriate, lateral parietal and lateral 
frontal areas, the mesial hemispheric surface and the 
temporal cortices. The cortico-pallidal projections are 
from premotor and from primary somatosensory and 
motor cortices  [133, 134] . The fronto-cerebellar circuit 
connects the frontal-cortical regions with the cerebel-
lum, in a loop. The cerebellar contribution to the organi-
zation of higher order brain functions has been recently 
shown, including in ADHD  [145–152] . The cerebellum is 
topologically linked to different cerebral primary senso-
rimotor and association areas through the pons via the 
feed-forward pathway, and by way of the thalamus via the 
feedback pathway  [149, 150, 152–154] . Motor deficits are 
characteristic of ADHD such as moving or talking exces-
sively in inappropriate situations and poor fine motor 
ability  [155]  as well as timing and force control  [156] .

   Reward.  This circuitry consists principally of the 
amygdala, nucleus accumbens septi, basal forebrain (in-
cluding the sublenticular extended amygdala), striatum, 
thalamus, limbic brainstem and cortical areas such as the 
fronto-orbital, ACC, anterior insula and DLPFC  [157–
165] . The reward system is central to memory consolida-
tion and recall, spatial and contextual sensory process-
ing, integrating stimulus reward associations, reward 
guided behaviors and determining mood. Reward dys-
functions are hypothesized to be important in ADHD 
 [166] .

   Emotion Regulation.  This network involves the amyg-
dala, fronto-orbital cortex, pregenual cingulate and the 
cerebellar vermis. The fiber tracts involved are the CB 
and the amygdalofugal pathway. The cerebellar vermis is 
connected via corticopontine and pontocerebellar fibers 
and the cerebello-thalamo-cortical loop to the cortical 
centers. These circuits may be abnormal in persons with 
ADHD who have excessive irritability, and especially 
those with mood instability.

   Mapping Abnormal Networks in ADHD.  The proposed 
neural networks derive from neuroimaging studies of 
ADHD primarily in male children  [25, 167] , work with 
adults  [37, 38] , and the functional neuroanatomy of symp-
toms and neurocognitive deficits associated with the dis-
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order  [8]  ( fig. 3 ). The mapping of ADHD abnormalities in 
these structural and functional networks is organized 
around dysfunctions in key structures (i.e. dACC), coor-
dinated functional neural networks (e.g. DLPFC and in-
ferior parietal lobule for working memory) and structural 
networks (i.e. DLPFC, dACC and the CB for attention). 

Our organizing framework is that behavioral symptoms 
and cognitive deficits in ADHD arise from damage or 
dysfunction in these networks as well as compensation by 
other networks. The ACC has attracted considerable at-
tention as one of the principal structures implicated in 
ADHD  [28, 37, 51] . Failure of ACC connections with oth-
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  Fig. 3.  Conceptual model of the neuroanatomical substrates of ADHD. AMF = Amygdalo-fugal pathway; 
MFB = medial forebrain bundle; LFS = local fiber system; SLF II = superior longitudinal fascicle; ICal = in-
ternal capsule anterior limb; TOP = temporo-occipito-parietal junction. 
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er cortical and subcortical centers may result in a distur-
bance of fundamental cortical properties that underlie 
ADHD symptoms. Likewise, the reward system may be 
strongly involved in many functions impaired in ADHD 
subjects and its breakdown or dysfunction may be critical 
for a variety of behavioral abnormalities. The reward-
aversion circuitry may be an integral part of the neurobi-
ology of ADHD, as it is thought to be for other conditions 
such as drug addiction, and particularly involved in all 
sources of reinforcement. Evidence suggests that when the 
mesocorticolimbic system malfunctions there is a high 
risk of the appearance of drug-seeking behaviors and ‘re-
ward deficiency syndrome’  [158, 168] . The mesocortico-
limbic system is a complex and interrelated network with 
many functions, including sensitivity to the actions of 
positive and negative reinforcement  [158, 169] . We posit 
that in ADHD, alterations in the cortico-striatial circuitry 
could produce deficits in motor control such as moving 
(running, climbing, fidgeting with hands or feet, etc.) ex-
cessively in inappropriate situations or talking excessive-
ly. These deficits in motor regulation could be accentu-
ated with abnormalities in the cortico-cerebellar circuit-
ry. Furthermore, alterations in the fronto-cerebellar 
network could decrease the efficiency of EF  [149] .

  Studying Neural Systems as Endophenotypes in 

ADHD 

 The demonstration that ADHD is a neurobiological 
disorder fueled interest in the basic brain properties that 
might mediate its phenotypic expression. Consequently 
there has been a focus on the brain structures related to 
these behavioral correlates as well as the neural networks 
in which these structures are assembled. The genotype-
phenotype paradigm aims to identify causal relation-
ships between biological markers and the genes  [159, 170, 
171] .

  Currently, neuroimaging has allowed the character-
ization of brain structure in an unprecedented way using 
different imaging modalities such as T 1 -weighted MRI, 

DT-MRI and fMRI  [134] . Once we quantify imaging-
based markers, i.e. endophenotypes, we will be able to 
diagnose ADHD, assess its treatment and identify genes 
that may lead to novel medications. Studying multiple 
anatomical regions that are components of a structural 
and functional circuit may be an important avenue to 
identify biomarkers for a disease. According to this view, 
systems biology acts as an interface between the behavior 
and the genome ( fig. 4 )  [159, 172] . In ADHD, the neural 
networks subserving attention, EF and impulsivity are 
putative biomarkers of the disorder. Thus, their struc-
tural quantification using MRI may ultimately be rele-
vant for diagnostic and therapeutic purposes in ADHD.

  ADHD can be conceptualized as a multisystem devel-
opmental disorder that has variable clinical expression, 
based in part on the heterogeneity and degree of neural 
systems dysfunction. Different neural systems can be af-
fected due to genetic heterogeneity, genetic and environ-
ment interaction (i.e. influence of certain environmental 
events such as maternal smoking and alcohol use on brain 
development), the timing of occurrence of these events, 
i.e. when in pregnancy, and the severity of the insult. Ge-
netic heterogeneity could lead to phenotypic variation 
that can be observed in the endophenotype measured by 
neuroimaging techniques. The concept of a multisystem 
disorder suggests variation in pathology ranging from 
relatively focal dysfunction to a large range of abnormal-
ities that is organized along domains of neural systems 
and behavior. This differs from the concept of a diffuse 
disorder, in which widespread pathology is suggested.

  Durston et al.  [173]  provide an example of how com-
plex genetic influences may selectively influence brain 
structure, and suggest that this approach has much po-
tential for the future. They showed a dissociation between 
the effects of 2 dopamine genes that are linked to ADHD 
( DAT1  and  DRD4 ), and are expressed in the brain selec-
tively (basal ganglia and prefrontal cortex, respectively). 
In their study of subjects with ADHD, unaffected siblings 
and healthy controls, the  DAT1  gene largely influenced 
caudate volume, whereas the  DRD4  gene was mainly as-
sociated with prefrontal gray matter volume  [173] . This 
study supports the idea of using intermediate pheno-
types, such as those derived from neuroimaging, to iden-
tify the pathways by which genes influence brain struc-
ture in a disorder like ADHD. Future work could study 
the gene-environment interaction in such a design by 
adding perinatal risk factors, such as maternal smoking 
(another risk factor for ADHD), to determine the sepa-
rate and potentially interactive effects on brain structure 
and behavior.

Behavior/

environment
Neural systems Genome

  Fig. 4.  Neural systems biology acts as an interface between behav-
ior and the genome. 



 Neural Systems in ADHD Dev Neurosci 2009;31:36–49 45

  Summary 

 Our review suggests that there is substantial support 
for the hypothesis indicating a critical brain abnormality 
in ADHD involving structural and functional alterations 
in the fronto-subcortical circuitry, although this has been 
broadened to include posterior cortical areas and the cer-
ebellum  [174, 175] . This extension of circuitry abnormal-
ities is based on the growing evidence that other brain 
regions, such as the inferior parietal lobule and the cer-
ebellar vermis, are also altered in ADHD. It has to be 
noted that there is a high degree of variation among the 
different studies regarding the probable influence of 
therapeutic interventions, comorbidities, age and gender. 
In addition, other potential sources of heterogeneity, such 
as variability in family history of ADHD and perinatal 
complications, have been poorly addressed in the extant 
literature. Despite these limitations there is a relatively 
consistent pattern of structural alterations in ADHD to 
date  [25, 29, 104] . In children with ADHD, the most rep-
licated abnormalities include smaller DLPFC, caudate, 
pallidum, corpus callosum and cerebellum. Although 
findings of smaller total brain volumes and widespread 
cortical changes, derived by region-of-interest-based 
techniques  [29]  and automated procedures  [31] , indicate 
that the brain may be altered in a more diffuse manner, 
specific structural alterations of neural systems  [38, 96]  
suggest that there may be more circumscribed and orga-
nized brain phenotypes in ADHD.

  The conceptualization of neural systems biology in 
ADHD is a step towards the understanding of what orga-
nizing principles have been altered during development 
within the brain of a subject with ADHD. Furthermore, 
the identification of these neural systems is critical for the 
characterization of brain abnormalities and structural 
endophenotypes detectable by neuroimaging. Moreover, 

the quantification of neural systems using imaging pro-
vides the capability of in vivo categorization and correla-
tion with behavior and genes. These capabilities will add 
greater knowledge and will help clarify the etiology of the 
disorder, its neurodevelopmental course, its response to 
treatment and the meaning of ADHD to patients, their 
families and treating clinicians.
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