Introduction to System Biology

Yinghao Wu Department of Systems and Computational Biology Albert Einstein College of Medicine Fall 2014

Outline

- Basic concepts
- Theoretical principles
- Experimental techniques

Outline

- Basic concepts
- Theoretical principles
- Experimental techniques

What is Systems Biology?

A systems biology approach means

- Investigating the components of cellular networks and their interactions
- Applying experimental high-throughput and whole-genome techniques
- Integrating computational and theoretical methods with experimental efforts

An Iterative Approach

Main Related Disciplines

• Biology

. . .

- Biotechnology
- Mathematics and Statistics
- Physics and Chemistry
- Information Science
- Engineering (Biomedical, Chemical, Electronic)
- Computer, Systems & Control,

Foundations

- Improved biological knowledge with the prospect of utilization in biotechnology and health care
- New experimental techniques in genomics and proteomics
- Classical mathematical modeling of biological processes
- Computer power for simulation of complex systems
- Storage and retrieval capability in large databases and data mining techniques
- Internet as the medium for the widespread availability from multiple resources of knowledge

Goals

- Models to unveil cellular mechanisms causing altered phenotypes
- Predictive tools to design cells with desired properties
- Individualized and predictive medicine

Models

In almost any case, models are only rough representations of their biological counterparts

Nevertheless, models enable to:

- Elucidate basic properties of modeled systems
- Check the reliability of basic assumptions
- Uncover lack of knowledge and requirements for clarification
- Create large repository of current knowledge

Definition of a Model

It depends on whom you ask...

- Geneticist: the mouse family Ts65DN serves as a model for human trisomy 21
- Chemist: a reaction network, described by dots (for metabolites) and arrows (for reactions)
- Mathematician/Engineer: the same reaction network can be modeled by a system of nonlinear ODEs

Abstractive representation of objects or processes that explains features of these objects or processes

Mathematical Models

Biological processes can be described in mathematical terms, however

- A biological object can be investigated by means of different experimental methods
- Each biological process can be described through different (mathematical) models
- The choice of a mathematical model or an algorithm depends on the problem, the purpose, and the intention of the investigator
- Modeling has to reflect essential properties of the system: Different models may highlight different aspects of the same instance

Model Development

Formulation of the problem:

• Identify the specific questions that shall be answered, along with background, problem and hypotheses

Available Knowledge: Check and collect quantitative and structural knowledge

- Components of the system
- Interaction map and kind of interactions
- Experimental results with respect to phenotypic responses against different stimuli (gene knockout, RNAi, environmental conditions)

Model Development

Selection of model structure:

- Level of description (atomistic, molecular, cellular, physiological)
- Deterministic or stochastic model
- Discrete or continuous variables
- Static, dynamical, spatio-temporal dynamical

Robustness/Sensitivity Analysis:

Test the dependence of the system behavior on changes of the parameters

Model Development

Predictive results from models

Experimental Tests

Assessment of the agreement and divergences between experimental results and model behavior

Iterative refinement of the hypotheses (and of the model)

Data Integration

Observation of biological phenomena is restricted to the granularity and precision of the available experimental techniques

A strong impulse to the development of a systematic approach in the last years has been given by the new high-throughput biotechnologies

- Sequencing of human and other genomes (genomics)
- Monitoring genome expression (transcriptomics)
- Discovering protein-protein and -DNA interactions (proteomics)

Different types of information need to be integrated

Issues in Data Integration

Data representation and storage:

- (too) Many databases (GO, KEGG, PDB, Reactome...)
- XML-like annotation languages (SBML, CellML)

Information retrieval

• Tools for retrieving information from multiple remote DBs

Data correlation

- Find the correlation between phenotypes and genomic/proteomic profiles
- Statistics, data mining, pattern analysis, clustering, PCA, ...

Information Exchange

- The interdisciplinary nature of systems biology requires the exchange of information among scientists from different fields
- Mathematical formulas have to be made understandable for biologists
- People acquainted with the rigid rules of mathematics and computers have to understand the diversity of biological objects and the uncertainty in the outcome of experiments

Outline

- Basic concepts
- Theoretical principles
- Experimental techniques

General Aims

 Quantitative analysis of components and dynamics of complex biological systems

• Nonlinearity

$$A + A \stackrel{k_1}{\underset{k=1}{\overset{d}{\underset{k=1}{\underset{k=1}{\overset{d}{\underset{k=1}{\underset{k=1}{\overset{d}{\underset{k=1}{\underset{k=1}{\overset{d}{\underset{k=1}{\underset{k=1}{\overset{d}{\underset{k=1}{\atopk}{\atopk}{k}{\atopk}}{\underset{$$

global properties not simple sum of parts

Feedback loops

• Open systems (dissipation of energy)

Flagella uses energy:

 $\frac{dE}{-} < 0$ dt

• Can have memory (response history dependent)

- Modularity
 - Interacting nodes w/ common function
 - Common modules frequently used in different networks

Nature Reviews | Genetics

- Robustness
 - Insensitivity to parameter variation

- There are no *precise* boundaries
 - Crosstalks between different subnetworks

- Quantitatively account for these properties
 - Different levels of modeling
- Three tiers
 - Static interactions
 - Deterministic
 - Stochastic
- Models which transcend tiers...

- Tier 1: Interactome
 - Which molecules talk to each other in networks?
- Tier 2: Deterministic
 - What is the average case behavior?
- Tier 3: Stochastic
 - What is the variance of the system?

- Tier 1
 - Get parts list

Table	1.	Examples	of	interlinked	positive	feedback	loops	in	biological	regulation.
-------	----	----------	----	-------------	----------	----------	-------	----	------------	-------------

System	Positive feedback loops
Mitotic trigger	$Cdc2 \rightarrow Cdc25 \rightarrow Cdc2$
	Cdc2 - Wee1 - Cdc2
	Cdc2 - Myt1 - Cdc2
p53 regulation	$p53 \rightarrow PTEN - Akt \rightarrow Mdm-2 - p53$
	p53 → p21 - CDK2 - Rb - Mdm-2 - p53
Xenopus oocyte maturation	$Cdc2 \rightarrow Mos \rightarrow Cdc2$
	$Cdc2 \rightarrow Cdc25 \rightarrow Cdc2$
	$Cdc2 \rightarrow Myt1 \rightarrow Cdc2$

- Tier 2 & 3
 - Enumerate biochemistry
 - Define network/mathematical relationships
 - Compute numerical solutions

A Cdk1-Cln2	B Receptor	C Progesterone
Ļ	Ļ	715
Cdc24	PLC	/ 12 \
loop	1	/ 1 \
Cdc42 Bem1	IP ₃ fast	Mos Myt1 Cdc25
loop ,	loops	loop X loops
actin	Ca ²⁺ _{ER} → IP ₃ R →	MAPK Cyclin B-Cdc2
Ļ	loop	
Output	SOC Ca ²⁺	1
	Ļ	Output
	Output	

System	Positive feedback loops
Mitotic trigger	$Cdc2 \rightarrow Cdc25 \rightarrow Cdc2$
	Cdc2 - Wee1 - Cdc2
	Cdc2 - Myt1 - Cdc2
p53 regulation	$p53 \rightarrow PTEN - Akt \rightarrow Mdm-2 - p53$
	p53 → p21 - CDK2 - Rb - Mdm-2 - p53
Xenopus oocyte maturation	$Cdc2 \rightarrow Mos \rightarrow Cdc2$
	$Cdc2 \rightarrow Cdc25 \rightarrow Cdc2$
	$Cdc2 \rightarrow Myt1 \rightarrow Cdc2$
- ··· · · · · · · · · · · · · · · · · ·	

Table 1. Examples of interlinked positive feedback loops in biological regulation.

1) One loop

$$\frac{dOUT}{dt} = k_{out_on} * A * (1 - OUT) - k_{out_off} \\
* OUT + k_{out_min}$$

$$\frac{dA}{dt} = [stimulus * \frac{OUT^n}{OUT^n + ec_{50}^n} \\
* (1 - A) - A + k_{min}] * \tau_A$$
2) Two loops

$$\frac{dOUT}{dt} = k_{out_on} * (A + B) * (1 - OUT) - k_{out_off} \\
* OUT + k_{out_min} \\
\frac{dA}{dt} = [stimulus * \frac{OUT^n}{OUT^n + ec_{50}^n} \\
* (1 - A) - A + k_{min}] * \tau_A$$

$$\frac{dB}{dt} = [stimulus * \frac{OUT^n}{OUT^n + ec_{50}^n} \\
* (1 - B) - B + k_{min}] * \tau_B$$

- Tier 2 & 3
 - Deterministic: Behavior of system with respect to time is predicted with certainty given initial conditions
 - Stochastic: Dynamics cannot be predicted with certainty given initial conditions

• Deterministic

- Ordinary differential equations (ODE's)
 - Concentration as a function of time only
- Partial differential equations (PDE's)
 - Concentration as a function of space and time
- Stochastic
 - Stochastic update equations
 - Molecule numbers as random variables
 - functions of time

 $\frac{d\vec{x}}{dt} = f(\vec{x})$

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - \nu \frac{\partial C}{\partial x} + R$$

$$\frac{\partial}{\partial t} P(Y, t | Y_0, t_0) = \sum_{\mu}^{M} [c_{\mu} h_{\mu} (Y - \alpha_{\mu}) \\ \times P(Y - \alpha_{\mu}, t | Y_0, t_0) - c_{\mu} h_{\mu} (Y) P(Y, t | Y_0, t_0)] \\ Y = \# \text{ molecules at time t}$$

Tier 1: Static interactome analysis

- Protein-protein
 - Signal transduction
 - Cell cycle
- Protein-DNA
 - Gene regulation
- Metabolic pathways
 - Respiration
 - cAMP

Tier 1: Static interactome analysis

- Goals
 - Determine network topology
 - Network statistics
 - Analyze modular structure

Tier 1: Static interactome analysis

- Limitations:
 - Time, space, population average
 - Crude interactions
 - strength
 - types
 - Global features
 - starting point for Tier 2 & 3

typical interactome

first time-varying yeast interactome (Bork 2005)

Tier 2: Deterministic Models

- Goal
 - model mesoscale system
 - average case behavior
- Three levels
 - ODE system
 - ODE compartment system
 - PDE

$$\frac{dC}{dt} = (\text{generation}) - (\text{consumption})$$

cell compartments

= (generation) + (flux in)

-(consumption) - (flux out)

lumped cell

$rac{\partial ho_D}{\partial t}$	=	$D_D rac{\partial^2 ho_D}{\partial x^2} - rac{\sigma_1 ho_D}{1 + \sigma_1' ho_e} + \sigma_2 ho_e ho_d$
$rac{\partial ho_d}{\partial t}$	=	$rac{\sigma_1 ho_D}{1+\sigma_1' ho_e}-\sigma_2 ho_e ho_d$
$rac{\partial ho_E}{\partial t}$	=	$D_E rac{\partial^2 ho_E}{\partial x^2} - \sigma_3 ho_D ho_E + rac{\sigma_4 ho_e}{1 + \sigma_4' ho_D}$
$rac{\partial ho_e}{\partial t}$	=	$\sigma_3 ho_D ho_E-{\sigma_4 ho_e\over 1+\sigma_4' ho_D}.$

 $\frac{dC_i}{dt}$

continuous time & space (MinCDE oscillation)

(1)
(2)
(3)
(4)

A simple example:

- One of simplest experiments in biology: Tracking cell divisions (eg, bacteria) over time.
- Analogous dynamics for tumor cell divisions (what they learn in med school):

A tumor starts as one cell

The cell divides and becomes two cells

Cell divisions continue...

Albert Einstein College of Medicine

 Ex: If N (representing, eg, bacterial density, or number of tumor cells) is a continuous function of t (time), then the derivative of N with respect to t is another function, called dN/dt, whose value is defined by the limit process

$$\frac{dN}{dt} = \lim_{t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t}$$

 This represents the change is N with respect to time.

- Let *N*(*t*) = bacterial density over time
- Let K = the reproduction rate of the bacteria per unit time (K > 0)
- Observe bacterial cell density at times t and (t+Dt).
 Then

 $N(t+Dt) \approx N(t) + K N(t) Dt$

Total density at t time t+Dt ≈ Total density at t

Total density at time t + increase in density due to reproduction during time interval Dt

• Rewrite: $(N(t+Dt) - N(t))/Dt \approx KN(t)$

• Take the limit as $Dt \rightarrow 0$

$$dN/dT = KN$$

"Exponential growth" (Malthus:1798)

• Analytic solution possible here.

$$N(t) = N_0 e^{Kt}$$
$$N_0 = N(0)$$

• Implication: Can calculate doubling time

• Find "population doubling time" t:

$$N(\tau)/N_0 = 2$$
 and $N(t) = N_0 e^{Kt}$ imply $2 = e^{K\tau}$

Taking logs and solving for t gives

 $\ln(2) = K\tau \longrightarrow \tau = \ln(2)/K$

• Point: doubling time inversely proportional to reproductive constant *K*

- Doubling time t=ln(2)/K
- Suppose K=ln(2), so t=1, ie, cell population doubles in 1 day.
- $2^{30} \approx 10^{\frac{9}{2}}$ In 30 days, 1 cell $\rightarrow \rightarrow$ detectable population
- Tumor will reach 100 grams between days 36 and 37.
- One week later, tumor weighs a kilo and is lethal.
- Every cancer cell must be killed to eliminate the tumor

Exponential Growth: Realistic?

Extending the Growth Model: Additional Assumptions + New System

- Reproductive rate *K* is proportional to the nutrient concentration, *C*(*t*): so *K*(*C*)=k*C*
- a units of nutrient are consumed in producing 1 unit of pop'n increment → system of equations:

$$\frac{dN}{dt} = \kappa CN$$
$$\frac{dC}{dt} = -\alpha (\frac{dN}{dt}) = -\alpha \kappa CN$$

- Further simplify the system of ODEs: $dN/dt = \kappa (C_0 - \alpha N) N$
- Logistic Growth Law!

Analysis of Logistic Model for Cell Growth

Solution:

- N_0 = initial population
- kC_0 = intrinsic growth rate
- C_0/a = carrying capacity
- For small popn levels *N*, *N* grows about "exponentially", with growth rate r ≈ kC₀
- As time $t \to \infty$, $N \to N(\infty) = C_0/a$
- This "self limiting" behavior may be more realistic for longer times

Exponential versus Logistic Growth

- 1. Ask the question.
- 2. Select the modeling approach.
- 3. Formulate the model.
- 4. Solve the model.
- 5. Validate the accuracy.
- 6. Revise the model.

- More compliated example
 - Robustness in bacterial chemotaxis
- Chemotaxis: bacterial migration towards/away from chemicals

Chemotaxis: reduction in tumbling frequency to drive swimming toward attractant

- Model: three modules
 - Parameters
 - concentrations
 - Binding affinities

Nature Reviews | Molecular Cell Biology

• Ligand binding $L+T_{n(p)}(CheR) \xleftarrow{k5 \sim k7}{km5 \sim km7} LT_{n(p)}(CheR)$ • Methylation $(L)T_{n(p)} + CheR \xrightarrow{k1c \sim k4c} (L)T_{n+1(p)} + CheR$ $(L)T_{n(p)} + CheB_{p} \xrightarrow{k1m \sim k4m} (L)T_{n-1(p)} + CheB_{p}$ • Phosphorylation $(L)T_{n}(CheR) + ATP \xrightarrow{k7 \sim k9} (L)T_{np}(CheR) + ADP$ $(L)T_{np}(CheR) + CheY \xrightarrow{ky} T_{n}(CheR) + CheY$ $(L)T_{np}(CheR) + CheB \xrightarrow{kb} T_{n}(CheR) + CheB_{p}$ $CheY_{p} + CheZ \xrightarrow{kmy} CheZ + CheY + P$ $CheB_{p} \xrightarrow{kmb} CheB + P$

Albert Einstein College of Medicine

Nature Reviews | Molecular Cell Biology

Perfect Adaptation in Bacterial Chemotaxis Signaling

- The <u>adaptation precision</u> of the E. coli chemotaxis network is highly robust to perturbations
- but adaptation time and steadystate behavior are fine-tuned

Tier 3: Stochastic analysis

- Fluctuations in abundance of expressed molecules at the single-cell level
 - Leads to non-genetic individuality of isogenic population

Tier 3: Stochastic Analysis

- When stochasticity is negligible, use deterministic modeling...
- Molecular "noise" is low:
 - System is large
 - molar quantities
 - Fast kinetics
 - reaction time negligible
 - Large cell volume
 - infinite boundary conditions

Tier 3: Stochastic Analysis

- Molecular "noise" is high:
 - System is small
 - finite molecule count matters
 - Slow kinetics
 - relative to movement time
 - Large cell volume
 - relative to molecule size
- Need explicit stochastic modeling!

Tier 3: Ensemble Noise

- Transcriptional bursting
 - Leaky transcription
 - Slow transitions between chromatin states
- Translational bursting
 - Low mRNA copy number

Tier 3: Temporal Noise

Chemical reactions are described by the law of mass action

- the speed of a reaction is proportional to the concentrations of the individual reactants involved
- However, a specific reaction between two molecules depends on their random collisions.

Gillespie's simulation algorithm

- stochastic method based on the theory of collisions
- each reaction takes a (continuous) random time which is exponentially distributed

Canonical way of modeling molecular stochasticity

Tier 3: Spatial Noise

Finite number effect: translocation of molecules from the nucleus to the cytoplasm have a large effect on nuclear concentration

Tier 3: Stochastic Analysis

- Measurement of chemical kinetics parameters and molecular concentrations *in vivo*
 - Differences between in vitro and in vivo data

Summary

- Each biological process can be described through different (mathematical) models
- The choice of a mathematical model or an algorithm depends on the problem, the purpose, and the intention of the investigator
- Modeling has to reflect essential properties of the system: Different models may highlight different aspects of the same instance

Outline

- Basic concepts
- Theoretical principles
- Experimental techniques

Getting Experimental Data

- Systems scientists are typically not concerned about the difficult and often ignore processes by which biological relationships and interactions are identified
- However, it is worth having a glimpse at the basic techniques used in experimental biology
- Two main issues arise when using experimental techniques:
 - How to get quantitative data out of experiments designed to give qualitative answers
 - How to get time-sampled (synchronized) measurements of many biological objects (possibly cheaply and in a suitable time)

DNA Microarrays

- DNA chips, also called DNA microarrays, are method for the high-throughput analysis of gene expression
- Instead of looking at the expression of a single gene, microarrays allow one to monitor the expression of several thousand genes in a single experiment, resulting in a global picture of cellular activity
- Hence they represent a key tool for implementing a systems biology approach

Single Feature

Image courtesy of Affymetrix, Inc.

Actual strand = 25 base pairs

Probes Hybridization

RNA fragments with fluorescent tags from sample to be tested

Hybridized DNA Visualization

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Image courtesy of Affymetrix, Inc.

Time-Course Experimental Data

Microarrays enable to derive time-course experimental data, with a desired sampling time

Rustici et al, Nature Genetics 36(8), 2004

Protein Microarrays

The function of a gene is realized by the coded protein, not by its mRNA

This fact addresses a main flaw in the DNA microarray approach

Solution: protein microarrays! Unfortunately...

- Proteins are not as uniform as DNA
- It is not (yet) possible to generate the amount of recombinant protein needed for high-throughput experiments
- Optimal interaction conditions (in terms of temperature, ionic strenght, pH) are largely varying among proteins

Nonetheless, research on protein chips is rapidly progressing

ChIP on Chip

Chromatin Immuno–Precipitation is used to discover transcription factors (protein-DNA interactions)

Yeast Two-Hybrid (Y2H)

- The two-hybrid system is a molecular genetic tool which facilitates the study of protein-protein interactions.
- If two proteins interact, then a reporter gene is transcriptionally activated.
- A color reaction can be seen on specific media.
- You can use this to
 - Study the interaction between two proteins which you expect to interact
 - Find proteins (prey) which interact with a protein you have already (bait).

Yeast Two-Hybrid (Y2H)

Key: DBD DNA binding domain MACT REP Transcription activation or repressor domain

Yeast two hybrid advantages and disadvantages

Advantages

- Y2H is relatively sensitive can detect even transient and unstable interactions (e.g. signal transduction interactions)
- can be used to map binary interactions (e.g. detail interactions within a complex of proteins)
- can be used to assess protein interactions for non-native yeast proteins

Disadvantages

- Interactions must occur within the nucleus to be detected (e.g. will miss membrane-bound proteins, etc.)
- Interactions may not be biologically relevant (e.g. proteins are not normally co-localized, or need additional co-factors for proper folding)
- Condition-specifity?

OF YESHIVA UNIVERSITY

Albert Einstein College of Medicine

Tandem affinity purification – mass spectrometry (TAP-MS)

Complex pulldown/purification

Mass spec. identification

MS

TAP/MS advantages and disadvantages

Advantages

- detects complexes in their native environment (e.g. not expressed in a yeast cell)
- requires tagging of only one protein at once (not individual pairs as in Y2H)
- ideal for detecting stable protein complexes

Disadvantages

- complex interactions must be extremely robust to be pulled down after lysis, purification, etc. (may miss more transient interactions)
- Interactions are not direct binary relationships— they are inherently complexes (requires "spoke" or "matrix" model for binary transformation)
- Low abundance proteins may be hard to pull-down
- TAP tag may interfere with normal protein interactions

Summary

- Basic concepts
 - > An interdisciplinary field
 - Importance of modeling
- Theoretical principles
 - > Three levels of theoretical models
- Experimental techniques

Outline

- Modeling gene regulation
- Modeling protein structures
- Modeling protein dynamics
- Modeling protein-protein interactions
- Modeling signaling pathways
- Cell-based simulations
- Multiscale modeling

