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HIERARCHY OF PROTEIN STRUCTURE

1. 2.

Primary

""-{—E—.

. Hydrophobic amino acids . Polar amino acids
. Charged amino acids Glycine

3. Tertiary 4. Quaternary
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X-Ray Crystallography

- crystallize and 8

immobilize single, -
perfect protein

- bombard with X-rays,

record scattering
diffraction patterns

« determine electron
density map from
scattering and phase
via Fourier transform:

rx=1 r:r=1 rz=1 )
Flak) =V Jrco d yme Joase pix,y.Z) it kGatyhtac) dezdyrdz

"All crystallographic models are not equal. ... The brightly colored stereo views
of a protein model, which are in fact more akin to cartoons than to

¢ use eIeCt ron denSIty molecules, endow the model with a concreteness that exceeds the

intentions of the thoughtful crystallographer. It is impossible for the

a N d b i o c h e m i ca I crystallographer, with vivid recall of the massive labor that produced the

model, to forget its shortcomings. It is all too easy for users of the model to

be unaware of them. It is also all too easy for the user to be unaware that,
kﬂOWled ge Of the through temperature factors, occupancie)é, undetected parts of the protein,

= = and unexplained density, crystallography reveals more than a single
protein to refine and molscular model shows.* 0
- - Rhodes, “Crystallography Made ~ E I N STE I N
determine a model Crystal Clear p. 183, e -
ert Einstein College of Medicine
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NMR Spectroscopy

protein in aqueous solution,
motile and tumbles/vibrates
with thermal motion

NMR detects chemical shifts of
atomic nuclei with non-zero
spin, shifts due to electronic
environment nearby

determine distances between
specific pairs of atoms based
on shifts, “constraints”

use constraints and
biochemical knowledge of the
protein to determine an
ensemble of models

using constraints to determine <
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PDB Growth

B Deposited structures for the year
ETotal available structures (incl. models)
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Only a few folds are found in nature

NEWS AND VIEWS

PROTEINS

One thousand families for the
molecular biologist

Cyrus Chothia NATURE -

How many families of proteins are
there? By putting together the informa-
tion to be found in papers published
over the past few months we can make
an initial estimate, and my calculation
suggests that the large majority of pro-
teins come from no more than one
thousand families.

Proteins are clustered into families

lies, crystallography, NMR and molecu-
lar modelling will produce, at least in
outline, structures for most proteins in
time for the completion of the genome
projects. 0

VOL 357 -

18 JUNE 1992

TABLE 2 Genome projects

Approximate Tentative

number of date of
Species genes completion
Escherichia 4,000 1995-98
col
Yeast 7,000 2000
Caenorhabditis 15,000 2000
elegans
Human 50-100,000 2015

TABLE 1 New gene sequences that are related to previously
determined sequences

Genome projects

Source Total number

of genes
Caenorhabditis elegans
chromosome |1l (part) 32
Yeast
chromosome |l 182
chromosome X (part) 46

Large libraries of expressed genes

Source Total number
of clones
Human brain ~1.400%
Caenorhabditis elegans
St Louis—Cambridge 1517
NIH 585

Genes related to those Ref.
previously determined

14 (44%) 1
5266 (29—36%) 2
15 (33%) .

Clones related to previously
determined protein sequences

406 (~30%) 3
512 (34%) i EINSTEIN
210 (36%)
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Protein classification

Number of protein sequences grows exponentially
Number of solved structures grows exponentially
Number of new folds identified very small (and close to constant)

Protein classification can
— Generate overview of structure types
— Detect similarities (evolutionary relationships) between protein sequences
— Help predict 3D structure of new protein sequences
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Structure Classification Databases

 SCOP

— Manual classification (A. Murzin)
— scop.berkeley.edu

 CATH

— Semi manual classification (C. Orengo)
— www.biochem.ucl.ac.uk/bsm/cath

+ FSSP

— Automatic classification (L. Holm)

— www.ebi.ac.uk/dali/fssp/fssp.html
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Protein structure classification: SCOP

Protein fold

Protein world Protein superfamily

Protein family
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Structural Classification of Proteins (SCOP)
http:/ /scop.berkeley.edu /

Class @

o Similar secondary
structure content

> All o, all , alternating a/
() etc

Fold (Architecture)
° Major structural similarity

o S§SE’s in similar
arrangement

Supertamily (Topology)
o Probable common
ancestry
> HMM family membership

Family
© Clear evolutionary _
relationship - )
o Pairwise sequence flavodoxin ﬁ-'aCta"’!ase
similarity > 25% (4fxn) WSS EINSTEIN
) IIn:n: G} ' Dm'i
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Major classes in SCOP

* Classes
— All o proteins
— All B proteins
— o and P proteins (o/P)
— o and P proteins (o+f3)
— Multi-domain proteins
— Membrane and cell surface proteins
— Small proteins
— Coiled coil proteins
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a /B alternating

Parallel p sheets, p-a-f
units

-

J

o +f
Anti-parallel p sheets.
segregated o and P regions
helices mostly on one side of
sheet
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Folds

>~50% secondary structure elements
arranged in the same order in Fold Q@
sequence and in 3D

Superfamily
No evolutionary relation

Family

Proteins
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Superfamilies

* Proteins which are (remotely)
evolutionarily related Fold

— Sequence similarity low

Superfamily ;i “a

— Share function

— Share special structural features Family

e Relationships between members of a
superfamily may not be readily recognizable Proteins
from the sequence alone
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Families

Proteins whose evolutionarily

relationship is readily recognizable from

the sequence
(>~25% sequence identity)

Families are further subdivided into
Proteins

Proteins are divided into Species

— The same protein may be found in
several species

Fold

Superfamily

A

Proteins
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Protein Classification

* Given a new protein sequence, can we place it in its “correct” position
within an existing protein hierarchy?

Fold

_ Superfamily
new proteln

Proteins
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Protein Structure Comparison

Global versus local alignment
Measuring protein shape similarity
Protein structure superposition

Protein structure alignment

Alber
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Global versus Local

S

&

Global alignment
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Global versus Local (2)

Local alignment
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Measuring protein structure similarity

Given two “‘shapes” or structures A and B, we are interested
in defining a distance, or similarity measure between
A and B.

* Visual comparison
* Dihedral angle comparison
* Distance matrix

* RMSD (root mean square distance)
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Comparing dihedral angles

Torsion angles (¢, ) are:
- local by nature
- invariant upon rotation and translation of the molecule
- compact (O(n) angles for a protein of n residues)

But...

—>

Add 1 degree
Toall 9 v
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Distance matrix
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Distance matrix (2)

* Advantages
- Invariant with respect to rotation and
translation
- can be used to compare proteins

* Disadvantages
- the distance matrix 1s O(n2) for a protein with
n residues
- comparing distance matrix i1s a hard problem
- Insensitive to chirality

P EINSTEIN
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Root Mean Square Distance (RMSD)

To compare two sets of points (atoms) A={a,, a,, ...ay} and B={b,, b,, ...,b,}:
-Define a 1-to-1 correspondence between A and B
for example, a, corresponds to b, for all 1 in [1,N]
-Compute RMS as:
4 | )
1 N
2
RMS(A,B)=_|— Y d(a,,b)
\NS
N\ Y

d(A;,B,) 1s the Euclidian distance between a, and b;.
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Protein Structure Superposition

* Simplified problem: we
know the correspondence
between set A and set B

* We wish to compute the
rigid transformation T
that best align a, with b;,

* The error to minimize 1s . T(a)— bl
defined as: g_ITnlan:l:H (@;)=b
& J

£
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Protein Structure Superposition (2)

* Arngid-body transformation T 1s
a combination of a translation t
and a rotation R: 7(x) = Rx+¢

* The quantity to be minimized is:

N
&= IIliIlZHRai —b,+ tHZ

LR =l




The translation part

€ is minimum with respect 88

N
to t when: Z RCZ —b +t) O
o =

N N
Then: t:_R(Zaij_l_zbi
i=1 i=1

If both data sets A and B have been centered on O, thent =0 !

Step 1: Translate point sets A and B such that their centroids coincide
at the origin of the framework <
g EINSTEIN
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The rotation part (1)

Let u, and pg be the centers of A and B, and A’ and B’ the
matrices containing the coordinates of the points of A and B centered

on O: N
Q: %Zai \
i=1

1 N
ﬂB_ﬁ;bi

Az[a1_/u,4 ay —Hy - aN_/u]

A
B\z [b1 —Hp bz —Hp - bN _IUB]/

Build covariance matrix: C = AB”
Nx3

3xN

[

. 3x3

£
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The rotation part (2)

Compute SVD (Singular Value Decomposition) of C:
.c=UDV’]

U and V are orthogonal matrices, and D is a diagonal matrix
containing the singular values.
U, Vand D are 3x3 matrices

Define S by:

1 if det(C)>0
diag{l,1,—1} otherwise

Then

(R=USV"|

be EINSTEIN
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The algorithm

1. Center the two point sets A and B

2. Build covariance matrix:

4. Define S:

. 1 if det(C)>0
- diag{l,1,—1} otherwise

C=AB’
3. Compute SVD (Singular Value 5. Compute rotation matrix
Decomposition) of C:
T
(c=upV7) R=USV’
6. Compute RMSD:
( N N 3 )
2
Za'l. + Zb" B ZZdiSi
kMSD = N JTEINSTEIN
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Example: NMR structures

Superposition of NMR
Models

1AW6
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Protein Structure Alignment

The Problem:

Given two sets of points A=(al, a2, ..., an) and B=(b1,b2,...bm) 1n
3D space, find the optimal subsets A(P) and B(Q) with |[A(P)I=IB(Q)|,
and find the optimal rigid body transformation between the two
subsets A(P) and B(Q) that minimizes a given distance metric D over
all possible rigid body transformation G, 1.e.

[mGin{D(A(P)—G(B(Q)))}]

The two subsets A(P) and B((Q) define a “correspondence”, and
p = |A(P)|=IB(Q)| 1s called the correspondence length.

L
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Protein Structure Alignment

Iterate N times:

1. Set Correspondence C to a seed correspondence
set (small set sufficient to generate an alignment
transform)

2. Compute the alignment transform G for C and
apply G to the second protein B

3. Update C to include all pairs of features that are
close apart

4. If C has changed, then return to Step 2

L
92 EINSTEIN
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Protein Structure Alignment: Example
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Existing Software

DALI (Holm and Sander, 1993)
SSAP (Orengo and Taylor, 1989)
STRUCTAL (Levitt et al, 1993)
VAST [Gibrat et al., 1996]
LOCK [Singh and Brutlag, 1996]

CE [Shindyalov and Bourne, 1998]
SSM [KTrissinel and Henrik, 2004 ]

el EINSTEIN
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Why do we need computational approaches?

The goal of research in the area of structural genomics is to provide the means to
characterize and identify the large number of protein sequences that are being discovered

Knowledge of the three-dimensional structure
» helps in the rational design of site-directed mutations
» can be of great importance for the design of drugs

» greatly enhances our understanding of how proteins function and how they interact with each other
, for example, explain antigenic behaviour, DNA binding specificity, etc

Structural information from x-ray crystallographic or NMR results
» obtained much more slowly.
» techniques involve elaborate technical procedures

» many proteins fail to crystallize at all and/or cannot be obtained or dissolved in large enough
guantities for NMR measurements

» The size of the protein is also a limiting factor for NMR

With a better computational method this can be done extremely fast.

L
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Computational methods for Protein Structure
Prediction

d Homology or Comparative Modeling
O Fold Recognition or threading Methods
[ Ab initio methods that utilize knowledge-based information

[ Ab initio methods without the aid of knowledge-based information

L
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COoOO000D0DD0O

Homology Modeling Process

Template recognition

Alignment

Determining structurally conserved regions
Backbone generation

Building loops or variable regions
Conformational search for side chains
Refinement of structure

Validating structures

L
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Template Recognition

First we search the related proteins sequence(templates) to the target
seqguence in any structural database of proteins

The accuracy of model depends on the selection of proper template
FASTA and BLAST from EMBL-EBI and NCBI can be used
This gives a probable set of templates but the final one is not yet decided

After intial aligments and finding structurally conserved regions among
templates, we choose the final template

L
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Alignment in Homology Modeling

Sequence alignment is central technique in homology modeling

[ Used in determining which areas of the reference proteins are conserved
in sequence

1 Hence suggesting where the reference proteins may also be structurally
conserved

d After SCRs are found, it is used to establish one to one correspondence
between the amino acids of reference proteins and the target in SCRs

O Thus providing basis of the transforming of coordinates from the reference
to the model

L
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The First Developed Algorithm

1 Needleman and Wunch algorithm for pairwaise sequence alignment
O Itis based on Dynamic Programming Algorithm

O Its a Global Alignment approach

L
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Dynamic Programming Algorithm

e A dynamic programming algorithm solves a
problem by combining solutions to sub-
problems that are computed once and saved in
a table or matrix.

® The basic idea behind dynamic programming is
the organization of work in order to avoid
repetition of work already done.

e DPAs are typically used when a problem has
many possible solutions and an optimal one has
to be found.

L
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Dynamic Programming Algorithm

Mathematical formulation

F(i,j) = MAX {
F(i-1, j-1) + s(x;, v)).
F(i-1, j) - d,
F(G, j-1) - d
i

Where F(i,j) is the value in cell (i,j); s is the score for
that match in the table; d is the gap penalty

L
- INSTEI

OF YESHIVA UNIVERSITY



Dynamic Programming Algorithm

5, S,...545, 5, S,...545
T1T2...Tj_1Tj TITZTJ -
-~ ~ /\_Y_} — ~ /\_Y_}
F(i-1,4-1) + s(S,.T;) F(i-1,j) —d
5, 5,...5 |—
T1 T2 o o o Tj—l TJ

— ~ /\_Y_)
F(i.j-1) —d

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Dynamic Programming Algorithm

Sequence |

I
F(0,0)

F(i-1,j-1)| F(i-1,j)

FGg-1) - FGj)

Sequence J

F(n,m)

F(i, j)=max{FG -1 j-1)+s(S.T), Fi-1,j)—d, F(i, j-1)—d}

£
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Dynamic Programming Algorithm

Example alignment:
ELVIS LIVES?

E L ' I S

O m < | =M
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Dynamic Programming Algorithm

BLOSUMG62 substitution matrix
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Dynamic Programming Algorithm

Simple global alignment

E L V I S
0] 9 0] 0,0 |0
L 0 <= -2 by 2 | 2<0
I 0 < -2 2, 5 6 < 4
V 0 f;-<—-2 0 6 8,<1— 6
E 0 5 <1 3 4 6 8
AN R
S 0 31 3 2 4 D10
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Dynamic Programming Algorithm

Traceback step

E L V I S

0 OT\ 0 0. © 0
L O~ -2 | 4,2 | 20
I 0 <t -2 2 N5 6 < 4
E 0 5 < 3 4 GT 8
S 0 31N 3 2 4 10

L
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Dynamic Programming Algorithm

Resulting alignment

*.'I:Hg
1CHa

"HyN—CH—C==0
i

X C; |-h- 13
Glutamic acid (E)

ELVI-S
-LIVES

Score:
-2+4+3+43-2+4
=10

CH,
. '!:Hz
_CH=CH,
"HyN—CH—C==0
..:; F -;T 4

Isoleucine (I)

: CHy

 CHCH,

"HyN— CH—C===0

& w1
Valine (V)
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The Modified Version Of Needleman Wunch

O Smith Waterman algorithm is modified Needleman Wunch
O It is for local alighment

1 Locate the best local alignment between two sequences
d What is Global and Local Alignment

d In global, we try to find similarity in whole sequence

O In local, we try to find small similar segments within sequences

L
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Local Alighment

d  Comparing sequences of different length

d  Proteins are from different protein families

Tools based on local alignment

O  BLAST & FASTA — alignment against databases
d  LALIGN & EMBOSS align — alighment of two sequences

O Infact there are more tools, these are the widely used

L
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Dynamic Programming Algorithm

Local alignment

e Differences from global alignments

- Minimum value allowed = 0
e Corresponds to starting a new alignment

- The alignment can end anywhere in the
matrix, not just the bottom right corner

® To find the best alignment, find the best
score and trace back from there

- Expected score for a random match
MUST be negative

L
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Dynamic Programming Algorithm

Local alignment formula

F(i,j) = MAX §
0,

F(i-1, j-1) + s(x,, Yi),
F(i-1, j) -

F(i, J-1) -

}

L
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Dynamic Programming Algorithm
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Dynamic Programming Algorithm
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Dynamic Programming Algorithm

Resulting alignments

ALLISH ALLISH
AL-IGN A-LIGN
Score: Score:
44+4-2+4+404+1 4-2+4+4+0+1
=11 =11
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Dynamic Programming Algorithm

Alignment with affine gap scores

e Affine gap scores

- “affine” means that the penalty for a gap is
computed as a linear function of its length

- Have a gap opening penalty
- Also have a less prohibitive gap extension
penalty
e Have to keep track of multiple values for
each pair of residue coefficients i and j in
place of the single value F(i,j)
- We keep two matrices, M and 1

L
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Dynamic Programming Algorithm

Affine gap score formula

M(i,j) = MAX §
M(i-1, j-1) + s(x.y;),
I(i-1, j-1) + s(x,y))

}

1(i,j) = MAX §
M(, j-1) - d,
1(i, j-1) - e,
M(i-1, j) - d,
I(i-1, j) - e
}
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Comparison Of Different Algorithms

 Traditional algorithms

» Find optimal alignment under a specific scoring criterian that includes the scoring matrix
and gap penalties

» Optimal alignment is quite often not the true biological alignment( Argos et al,
1991,Agarwal and States,1996)

 Heuristic algorithms

» Heuristic search tools find the optimal alignment with high probability and are less
computationaly expensive

» HMM based search methods improve both the sensitivity and selectivity of sequence
database searches,using position dependent scores to characterize and build a model

for an entire family of sequences

» Probabilistic Smith-waterman is based on HMM for a single sequence, more accurate
from others for complete length protein query sequences in large protein family but
poor when used with partial length query sequence
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Multiple Sequence Alighment

This is all about pairwise alignment

In general homology modeling, we would like to include more than two protein references for the
template protein

It helps in finding conserved domains among similar reference proteins
Therefore providing more information about structurally conserved domains in sequences

Multiple Sequence Alignment- Methods

» Multiple alignment is more difficult than pairwise alignment because the number of possible
alignments increases exponentially with the number of sequences to be aligned

\%

No ideal method exists, several heuristic algorithms are being used

\%

Simple way is to use Needleman and Wunch algorithm for pairwise alignment in multidimensional
space

\74

Disadvantage of this is exponetial increase of memory usage and time consumpiton
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Determining Structurally Conserved Regions
(SCRs)

When two or more reference protein structures are available
Establish structural guidelines for the family of proteins under consideration

First step in building a model protein by homology is determining what regions
are structurally conserved or constant among all the reference proteins

Target protein is supposed to assume the same conformation in conserved
regions
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Structurally Conserved Regions

 SCRs are region in all proteins of a | | There are generally two main
particular family that are nearly approaches

identical in structures.

. d Constructing c-alpha distance
] Tend to be at inner cores of the 8 P

proteins matrix
[ Usually contains alpha-helices O Aligning vectors of secondary
and beta sheets structure units
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1 C. Distance Matrix N

Protein 1

Protein 1

Protein 2
M

Protein 2

T e
1
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Alignment of Target Protein with SCR

After doing alignments and finding SCRs

We align the unknown sequence with the aligned reference proteins with the
knowledge of SCRs

Assignment of coordinates within conserved regions is done

SCR cant contain insertions and deletions
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Assignment of coordinates within conserved
region

Once the correspondence between amino acids in the reference and model
sequences has been made, the coordinates for an SCR can be assigned

The reference proteins' coordinates are used as a basis for this assignment

Where the side chains of the reference and model proteins are the same at
corresponding locations along the sequence, all the coordinates for the amino
acid are transferred

Where they differ, the backbone coordinates are transferred, but the side
chain atoms are automatically replaced to preserve the model protein's
residue types
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Assignment of coordinates in loop or variable
region

Two main methods
O  Finding similar peptide segments in other proteins

d  Generating a segment de-novo
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Assignment of coordinates in loop or
variable region

Finding similar peptide segment in other proteins

d Advantage: all loops found are guaranteed to have reasonable
internal geometries and conformations

d Disadvantage: may not fit properly into the given model protein’s
framework

In this case, de-novo method is advisable
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Selection Of Loops

1 Check the loops on the basis of steric overlaps
1 A specified degree of overlap can be tolerated
[ Check the atoms within the loop against each other

1 Then check loop atoms against rest of the protein’s atoms
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Side Chain Conformation Search

With bond lengths, bond angles and two rotable backbone bonds per
residue ¢ and ¢, its very difficult to find the best conformation of a side
chain

In addition, side chains of many residues have one or more degree of
freedom.

Hence Side chain conformational search in loop regions is must

Side chain residues replaced during coordinate transformations should
also be checked
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Selection Of Good Rotamer

O Fortunately, statstical studies show side chain adopt only a small number
of many possible conformations

[ The correct rotamer of a particular residue is mainly determined by local
environment

O Side chain generally adopt conformations where they are closely packed
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Selection Of Good Rotamer ... Contd

It is observed that:

O In homologous proteins, corresponding residues virtually retain the same
rotameric state (Ponder and Richards 1987, Benedetti et al. 1983)

O Within a range of x values, 80% of the identical residues and 75% of the
mutated residues have the same conformations(Summers et al. 1987)

[ Certain rotamers are almost always associated with certain secondary
structure(McGregor et al. 1987).
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Refinement of model using Molecular
Mechanics

Many structural artifacts can be introduced while the model protein is
being built

Substitution of large side chains for small ones

Strained peptide bonds between segments taken from difference
reference proteins

Non optimum conformation of loops
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Optimisation Approaches

O Energy Minimisation is used to produce a chemically and
conformationally reasonable model of protein structure

Two mainly used optimisation algorithms are
> Steepest Descent

> Conjugate Gradients
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Model Validation

O  Every homology model contains errors.Two main reasons
> % sequence identity between reference and model

> The number of errors in templates

d Hence it is essential to check the correctness of overall fold/ structure,
errors of localized regions and stereochemical parameters: bond
lengths, angles, geometries
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Challenges

To model proteins with lower similarities( eg < 30% sequence identity)
To increase accuracy of models and to make it fully automated

Improvements may include simulataneous optimization techniques in
side chain modeling and loop modeling

Developing better optimizers and potential function, which can lead
the model structure away from template towards the correct
structure

Although comparative modelling needs significant improvement,
it is already a mature technique that can be used to address
many practical problems
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Fold Recognition Methods

* Profile-based methods
* Threading-based methods
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Profile-based methods

* Physico-chemical properties of the amino acids
of the target protein must “fit” with the

environment in which they are placed in the
modeled structure.
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Profile-based methods
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Threading-based methods

« Alibrary of different protein folds i1s dernved from the
database of protein structures.

« Each fold is considered as a chain tracing through space;
the ornginal sequence being ignored completely.

* The test sequence is then optimally fitted to each library
fold, allowing for relative insertions and deletions in loop
regions.

« The ‘energy’ of each possible fit (or threading) is calculated
by summing the proposed pairwise interactions and the
solvation energy.

* The library of folds is then ranked in ascending order of
total energy, with the lowest energy fold being taken as the
most probable match.
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Ab initio methods
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Summary

* Introduction to protein structures
* Protein structure classification

* Protein structure comparison

* Protein structure prediction
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