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Outline

* Binary prediction of Protein-
protein Interaction (PPI)

* Analysis of PPl networks

e Structural modeling of PPI

* Physical properties of PPI
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Binary prediction of PPI: General
procedure

Training data
(sequences of
interacting
proteins)

Sequence
patterns

SVM Kernel

classifier

Training set for SVM kernel classifier
= Positive training set (experimental interactions, some for

training, some for validation)

Predict new
interactions from
sequences

+ Negative training set (mostly random generated pairs)
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Main ideas of SVMs

Mormal patients

Cancer patients

* Gene X

* Consider example dataset described by 2 genes, gene X and gene Y

* Represent patients geometrically (by “vectors”)
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Main ideas of SVMs
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* Gene X

* Find a linear decision surface (“hyperplane”) that can separate

patient classes and has the largest distance (i.e.,
“margin”) between border-line patients (i.e.,

largest “gap” or

“support vectors”);
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Main ideas of SVMs
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* If such linear decision surface does not exist, the data is mapped
into a much higher dimensional space (“feature space”) where the
separating decision surface is found;

* The feature space is constructed via very clever mathematical

projection (“kernel trick”). i_
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Classification of Amino Acid(AA)

No. || Dipole scalea| Volume scaleb Class

- - H Ala, Gly, Val
‘ - - \ Ile, Leu, Phe, Pro
+ + \ Tyr, Met, Thr, Ser

++ + His, Asn, Gln, Tpr

+++ + H Arg, Lys

6 +'+'+"' + \ Asp, Glu

o] - M“N“H

7 + ¢ + “ Cys
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Using Conjoint Triads for sequence pattern construction

B-ia6V)
@-LFp
W=y, M, T,5}
B-{H, N, Q, W}

={R, K}

={D, E}

={C}

Protein Sequence:
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Reduced-alphabet sequence
pattern training:

1.

Classify 20 AA types into 7
classes based on their
properties (hydrogen bonding,
hydrophobic, volumes of
sidechains, etc).

Build AA triplets using 7
classes, called “conjoint triad”
(343 unique types). Save in V

Calculate frequency of each
triad for each protein
sequence.
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Kernel Function

di=(fi-min {f1,f2,...... , f343})/max{fl, f2, .
..., 1343}
DAz{dAl,dAz, ...... ,dA343}

{Ds:} = {D.} @{D:}: a 686 dimensional vector

Kernel Function:
K(D,g. D|-_‘p] — EK]J{—T”HHE}E = miﬂ{{”[}A — DE”:
+ D = Dil). (IDs — Del* + [Dg — D)}
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. . X,X, ... Xy €R"
Given training data: ‘ o
y]ayza"-ay;.,,r E{_l,‘l‘l}

* Want to find a classifier
(hyperplane) to separate
negative instances from the
positive ones.

* An infinite number of such
hyperplanes exist.

* SVMs finds the hyperplane that
maximizes the gap between
data points on the boundaries
(so-called “support vectors”).

Negative instances (y=-1) Positive instances (y=+1)
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Kernel Function and parameter
adjustment c-128
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Fig. 1. Accuracy surface of threefold crossover validation on training set

versus the variations of parameters C and v.
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Network Prediction
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Network Prediction
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Network Prediction
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Outline

* Binary prediction of Protein-
protein Interaction (PPI)

* Analysis of PPl networks

e Structural modeling of PPI

* Physical properties of PPI
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Protein-Protein Interaction Networks?

* Protein are nodes
* Interactions are edges
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Introduction to graph theory

® Graph — mathematical object consisting of a set of:
O V = nodes (vertices, points).
O E = edges (links, arcs) between pairs of nodes.
ODenoted by G = (V, E).
O Captures pairwise relationship between objects.
O Graph size parameters: n=/V/, m = [E|.

{1,2,3,4,5,6,7,8}
{{1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,3}, {3,7}, {3.8}, {4,5}, {5,6} }
8

Vv
E
n

m

= 11
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Random network

* Connect each pair of node with prob p
* Expect value of edge is pN(N-1)/2
e Poisson distribution

— The node with high degree is rare

Pk

lllllll
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Scale-free network

* Power-law degree distribution
 Hubs and nodes

 When a node add into network, it prefer to
link to hubs
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Hierarchical network

Preserves network “modularity” via a
fractal-like generation of the network

. K

K

LN, LN

K K
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Hierarchical network
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Types of Network Comparisons

« 3 types (modes) of comparative methods:
1. Network alignment
2. Network integration
3. Network querying

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Types of Network Comparisons

1. Network alignment:

« The process of comparison of two or more
networks of the same type to identify regions of
similarity and dissimilarity

« Commonly applied to detect subnetworks that
are conserved across species and hence likely to
present true functional modules
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Types of Network Comparisons

2. Network integration:

The process of combining networks encompassing
interactions of different types over the same set of
elements (e.g., PPl and genetic interactions) to study

their interrelations

Can assist in uncovering protein modules supported
by interactions of different types P o




Types of Network Comparisons

Image from: http://Amwww-dsv.cea.fr/en/institutes/institute-of-biology-and-technology-saclay-il S lartiEinatais Eollagesof Madiains
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Types of Network Comparisons

3. Network querying:

« A given network is searched for subnetworks
that are similar to a subnetwork query of interest

« This basic database search operation is aimed

at transferring biological knowledge within and
across species

« Currently limited to very sparse graphs, e.g.,

trees
4
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Types of Network Comparisons

3. Network querying

® Useful application for biologists: given a
candidate module, align to a database of
networks (“query-to-database”)

Query: Database:
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Types of Network Comparisons

Summary

Table 1 Modes of network comparison

Mode Common application
Alignment At least two networks of the same type across
species

Integration At least two networks of different types for the
same species

Querying Subnetwork module versus a network

Main goals Some current limitations

|dentification of functional (conserved) protein  Limited to few (five or fewer) species
modules; study of network evolution; interaction
prediction

|dentification of modules (supported by several Mo agreed-upon way to combine scores over dif-
networks); study of interrelations between data  ferent networks
types; interaction prediction

|dentification of duplicated/conserved instances Query is limited to a tree topology
of the module; knowledge transfer

Sharan and Ideker (2006) Nature Biotechnology 24(4): 427-433 i EINSTEIN
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Network Alignment

 Finding structural similarities between two networks
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Network Alignment

« Methods vary in these aspects:
A. Global vs. local
B. Pairwise vs. multiple
C. Functional vs. topological information
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Network Alignment

« Methods vary in these aspects:
A. Global vs. local | T
B. Pairwise vs. multiple A
C. Functional vs. topological information

__________________________

A.Local alignment: I
» Mappings are chosen independently for each regicn)n of
similarity
» (Can be ambiguous, with one node having different
pairings in different local alignments
» Example algorithms:

PathBLAST, NetworkBLAST, MaWISh, Graemlin
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Network Alignment

« Methods vary in these aspects:
A. Global vs. local
B. Pairwise vs. multiple ,
C. Functional vs. topological information

A. Global alignment:

» Provides a unique alignment from every node in the
smaller network to exactly one node in the larger
network

» May lead to inoptimal matchings in some local regions
» Example algorithms:
IsoRank, IsoRankN, Graemlin 2, GRAAL, H-GRAAL
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Network Alignment

« Methods vary in these aspects:

A. Global vs. local o
B. Pairwise vs. multiple i %
C. Functional vs. topological information :

1

\

B. Pairwise alignment:
> Two networks aligned \\A
» Example algorithms:
GRAAL, H-GRAAL, PathBLAST, MaWISh, IsoRank

Multiple alignment:

» More than two networks aligned

» Computationally more difficult than pairwise alignment
» Example algorithms:

Greamlin, Extended PathBLAST, Extended IsoRank g
H EINSTEIN
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Network Alignment

« Methods vary in these aspects:
A. Global vs. local
B. Pairwise vs. multiple
C. Functional vs. topological information

C.Functional information

» Information external to network topology (e.g., protein sequence) used to
define “similarity” between nodes

»  Careful: mixing different biological data types, that might agree or contradict

Topological information
»  Only network topology used to define node “similarity”

» Good - since it answers how much and what type of biological information
can be extracted from topology only
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Network Alignment

In general, the network alignment problem is computationally
hard (generalizing subgraph isomorphism)

Hence, heuristic approaches are devised

For now, let us assume that we have a heuristic algorithm for
network alignment

How do we measure the quality of its resulting alignments?
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Network Alignment

* Key algorithmic components of network
alignment algorithmes:

— Node similarity measure

— Rapid identification of high-scoring alignments

from among the exponentially large set of possible
alignments

L
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Network Alignment

How is “similarity’ between nodes defined?

 Using information external to network topology, e.g., the
sequence alignment score
« Homology, E-values, sequence similarity vs. sequence identity...

* Using only network topology, e.g., node degree,
« Using a combination of the two
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Network Alignment

® How to identify high-scoring alignments?

® |dea: seeded alighnment

O lnspired by seeded sequence alignment (BLAST)

O Identify regions of network in which “the best”
alignments likely to be found

L
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Network Alignment

« How to identify high-scoring alignments?
« Greedy seed and extend approaches
« Use the most “similar” nodes across the two
networks as “anchors” or “seed nodes”™
« “Extend around” the seed nodes in a greedy fashion
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Network Alignment

« How to identify high-scoring alignments?
« Greedy seed and extend approaches
« Use the most “similar” nodes across the two
networks as “anchors” or “seed nodes”™
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Network Alignment

« How to identify high-scoring alignments?
« Greedy seed and extend approaches
« Use the most “similar” nodes across the two
networks as “anchors” or “seed nodes”™
« “Extend around” the seed nodes in a greedy fashion
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Network Alignment

« How to identify high-scoring alignments?
« Greedy seed and extend approaches
« Use the most “similar” nodes across the two
networks as “anchors” or “seed nodes”™
« “Extend around” the seed nodes in a greedy fashion
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Network Alignment

« How to identify high-scoring alignments?

« Greedy seed and extend approaches
« Use the most “similar” nodes across the two
networks as “anchors” or “seed nodes”™
« “Extend around” the seed nodes in a greedy fashion




Take home message

* Binary prediction of Protein-protein
Interaction (PPI)

* Analysis of PPl networks

 Different topologies of network
 Different type of network comparison
e Basic ideas of network alignment

e Structural modeling of PPI
* Physical properties of PPI
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Outline

* Binary prediction of Protein-
protein Interaction (PPI)

* Analysis of PPl networks

e Structural modeling of PPI

* Physical properties of PPI

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Outline

* Binary prediction of Protein-
protein Interaction (PPI)
* Analysis of PPl networks
e Structural modeling of PPI
* Protein-protein docking
* Template-based modeling
* Physical properties of PPI
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Outline
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Protein-Protein Docking

* Given two protemns A and B

* Predict complexX'structure AB

e, )
..- -‘II—'
T A o=
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Lock-and-Key Principle

Geometry

T
!

Chemistry




Docking Algorithm Scheme

= Part 1: Molecular surface representation

m Part 2: Features selection

» Part 3: Matching of critical features

» Part 4: Filtering and scoring of candidate
transformations
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1. Surface Representation
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Sparse Surface Graph -
6,

op

= Caps (yellow), pits
(green), belts (red):

m G, — Surface topology

top

graph:
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Docking Algorithm Scheme

Part 1: Molecular
surface -
representation

Part 2: Features <
selection

Part 3: Matching of
critical features

Part 4: Filtering and
scnr*ir}g of candidate
transtormations

2.1 Coarse Curvature
calculation

2.2 Division to surface
patches of similar curvature
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2.1 Curvature Calculation

* Shape function is a measure of
local curvature.

* 'knobs' and 'holes’ are local minima
and maxima (<1/3 or >2/3), 'flats' —
the rest of the points (70%).

knob

hole

flat
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2.2 Patch Detection

Goal: divide the surface into connected, non-
Intersecting, equal sized patches of critical
points with similar curvature.

= connected — the points of the patch
correspond to a connected sub-graph of G,,.

= similar curvature — all the points of the patch
correspond to only one type: knobs, flats or

holes.

» equal sized — to assure better matching we
want shape features of almost the same size.
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Examples of Patches for
trypsin and trypsin inhibitor

Yellow - knob patches, cyan - hole patches, green - flat

patches
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Shape Representation Part
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Docking Algorithm Scheme

+ Part 1: Molecular surface
representation

- Part 2: Features selection

* Part 3: Matching of
critical features

» Part 4: Filtering and scoring
of candidate transformations
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3. Matching of patches

The aim is to align knob patches with hole
patches, and flat patches with any patch. We use
two types of matching:

» Single Patch Matching — one patch from the
receptor is matched with one patch from the
ligand. Used in protein-drug cases.

» Patch-Pair Matching — two patches from the
receptor are matched with two patches from the
ligand. Used in protein-protein cases.

<ENEEN
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Single Patch Matching

Receptor hole patch Ligand knob patch

‘--...._____.

= Base: a pair of critical points with their normals from
one patch.

= Match every base from a receptor patch with all the
bases from complementary ligand patches.

= Compute the transformation for each pair of matched
bases.
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Patch-Pair Matchin

Receptor patches Ligand patches

= Base: 1 critical point with its normal from one patch and
1 critical point with its normal from a neighboring patch.

= Match every base from the receptor patches with all the
bases from complementary ligand patches.

= Compute the transformation for each pair of matched
bases.
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Base Compatibility

The signature of the base is defined
as follows:

1. Euclidean and geodesic distances
between the points: dE, dG

\ H
g‘é}/ segment and the normals

3. The torsion angle w between the
planes

H\Wf ------ \ ﬁ 2. The angles a, B between the [a,b]
o

dE, dG, a, B, w

Two bases are compatible if their signatures

match PR EINSTEIN
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Geometric Hashing

= Preprocessing: the bases are built for all

ligand patches (single or pairs) and stored
In hash table according to base signature.

= Recognition: for each receptor base
access the hash-table with base signature.
The transformations set is computed for all
compatible bases.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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Docking Algorithm Scheme

= Part 1. Molecular surface representation

m Part 2: Features selection

= Part 3: Matching of critical features

= Part 4: Filtering and scoring of
candidate transformations
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Filtering Transformations with
Steric Clashes

« Since the transformations were computed by local shape
features matching they may include unacceptable steric
clashes.
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Scoring Shape Complementarity

* The scoring is necessary to rank the remaining solutions.

* The surface of the receptor is divided into five shells according to the
distance function: S1-55

[-5.0,-3.6), [-3.6,-2.2), [-2.2, -1.0), [-1.0,1.0), [1.0>).

* The number of ligand surface points in
every shell is counted.

» Each shell is given a weight: W1-W5H
-10, -6, -2, 1, 0.

» The geometric score is a weighted sum of
the number of ligand surface points N

inside every shell:
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Flexible Docking - general methodology

= Rigid subpart docking :
— Split the flexible molecule into rigid subparts.
— Dock independently each subpart.

— Pair the top hypotheses for each subpart to detect
hinge consistency.

= Anchor fragment method :
— Position a ‘preferred’ anchor fragment.

— Rotate sequentially the flexible bonds to position the
other fragments.
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Outline

* Binary prediction of Protein-
protein Interaction (PPI)
* Analysis of PPl networks
e Structural modeling of PPI
* Protein-protein docking
* Template-based modeling
* Physical properties of PPI
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@ Protein-Protein Docking I (b) Template-Based Modeling
Target Chain A Target Chain B PDB Target Chain A  Target Chain B
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Template-based modeling: general
methodology

* Dimeric threading
* Monomer threading and oligomer

mapping
* Template-based docking
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(a)

Sequence B

Sequence A

Monomeric
threading

£ Iferterfac_eH‘\l_
I\evaluatiu //

Dimeric
threading

Monomeric
threading

Dimeric threading

library

Monomer model

(crude)

Monomer ? L
template ’ é
library 5
Monomer model @ = P
s R - % 3 Iﬂterfage
":___D 3B &evaluatmnf,x
ﬁ qgj_ —
Dimer ok, i ¢ M
template | ——» gf( %% I > gR %?
library
Dimer model c Better dimer model
e O =
(crude) 5 B (crude)
25
2
Monomer Favat @ ué
[73]
template > g R
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(b)

Sequence B

Sequence A

Monomer threading and oligomer mapping

Monomeric |psoromer +
threading
—

oligomer

template
library

Monomeric |Monomer +
threadin oligomer
d ) q

template
library

=
o
' 4
@
— s
w
o
Template 1 Template2  Template 3 £ £
=
'm

s A

% ;‘i =‘ﬂLr‘,‘

h'l,.l;‘-'___ﬁ:}a 5
e et a E
l': il ;'-5- :‘ "E :. E‘
B | e [R=R L
II ."1. i‘lht "‘ [=8
@
Template 1 Template Template 3 |o
H =
(monomer) (part of oligomer) (part of oligomer) -S
| @

/”'TﬁterralEé\

\
o e*.faluatlen/t

Dimeric template Dimer medel
(constructed) (crude)

interface only)

(i

{interface only)
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(c) Template-based docking

Chain B

Globalllocal

structure

similarity
search

Monomer models or
experimental structures

Chain A

Global/local

structure

similarity
search

-

Dimer or
interface
template
e
~
Dimer or
interface
template

If neighbors
Structural neughtmrs of the monomers fmrn
the same

lib

template

complex
Dimer/interface
—»

Structure
superposition

»lq

Dimer model

Structure
superposition

7 EINSTEIN
bl EINSTEIN

Albert Einstein College of Medicine

OF YESHIVA UNIVERSITY



Outline

* Binary prediction of Protein-
protein Interaction (PPI)

* Analysis of PPl networks

e Structural modeling of PPI

* Physical properties of PPI
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Outline

* Binary prediction of Protein-
protein Interaction (PPI)
* Analysis of PPl networks
e Structural modeling of PPI
* Physical properties of PPI
* Kinetic rates
* Binding affinity
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Kinetic parameters

The speed at which a complex AB dissociates is determined by its
dissociation rate constant k... (57):

—d[ AB]

AB| =
LAB] drt

km:;:;uc

The speed at which a complex AB forms is determined by its

association rate constant k... (M-'s-1):
+d[ AB]
Kossoc [A][B]= ~a
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At equilibrium: d[AB]/dt =0
kdissnc [AB] = kass [A][B]

kdissncfkassnc = [A][B]I[AB] = Kd
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Surface plasmon resonance (SPR)

+  SPR measures the change of the refractive index at the backside of a metal
film when protein A binds to protein B immobilized on this film

+ Using SPR, one can determine K, K eeoe 8N Kyiceoe
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Brownian Dynamics (BD)

 The dynamic contributions of the solvent are
incorporated as a dissipative random force (Einstein’s

derivation on 1905). Therefore, water molecules are not
treated explicitly.

e Since BD algorithm is derived under the conditions that
solvent damping is large and the inertial memory is lost
in a very short time, longer time-steps can be used.

- L

 BD method is suitable for long time simulation.
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Algorithm of BD

The Langevin equation can be expressed as

2
m, &1 (1)
dt
Here, r;and m, represent the position and mass of atom i, respectively. {; is a frictional
coefficient and is determined by the Stokes’ law, that is, {; = 6ma>°esn in which g s is a
Stokes radius of atom j and n is the viscosity of water. F; is the systematic force on atom /. R; is a
random force on atom i having a zero mean <R(t)>=0 and a variance <R/(t)R/(t)> = 67kT6; 5(t)

this derives from the effects of solvent.
For the overdamped limit, we set the left of eq.1 to zero,

dn_p iR, 2)
4

The integrated equation of eq. 8 is called Brownian dynamics;

F.(7) kT
r(t+Ar)=r(t)+— ——Aro, 3
; ‘/ r (3)

where At is a time step and w; is a random noise vector obtained from Gaussian distribution.
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Brownian dynamic simulation of protein association
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Equilibrium parameters

The strength of an interaction is usually given as the equilibrium
dissociation constant, K;:

_[A][B]

K,
[AB]
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Relationship between K, and Gibbs free energy change AG upon binding

AG = AG? + RT In [AB]/[A][B]
Under equilibrium conditions (AG = 0):

|AB]
[A][B]

AG" = -RT In

|
AG" = —RT In K =-RT 111{}(] = RTInK,

d
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Isothermal titration calorimetry (ITC)

ITC measures AH, which is the heat that is released or absorbed when the
complex AB associates from A and B

Using AH as the binding signal, one can determine K, the reaction
stoichiometry (n), and the reaction entropy (AS)
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Computational simulation of binding affinity:

thermodynamic cycles

AAbll‘u'.l

AAblnd

=

Unbound
AAA—»B

2
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Summary

* Binary prediction of Protein-
protein Interaction (PPI)

* Analysis of PPl networks

e Structural modeling of PPI

* Physical properties of PPI
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