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Training data 

(sequences of 

interacting 
proteins)

Sequence 

patterns

SVM Kernel

classifier

Predict new 

interactions from 

sequences

Training set for SVM kernel classifier
=  Positive training set (experimental interactions, some for 

training, some for validation) 
+  Negative training set (mostly random generated  pairs)

Binary prediction of PPI: General 

procedure









Classification of Amino Acid(AA)



Using Conjoint Triads for sequence pattern construction

Reduced-alphabet sequence 
pattern training:

1. Classify 20 AA types into 7 

classes based on their 

properties (hydrogen bonding, 

hydrophobic, volumes of 

sidechains, etc).

2. Build AA triplets using 7 

classes, called “conjoint triad” 

(343 unique types). Save in V

3. Calculate frequency of each 

triad for each protein 

sequence.



Kernel Function

• di = (fi - min {f1, f2, . . .. . ., f343})/max{f1, f2, . 

. .. . ., f343}

• DA={dA1,dA2,……,dA343}

• {DAB} = {DA} {DB}: a 686 dimensional vector 

• Kernel Function:





Kernel Function and parameter 

adjustment C=128

Γ=0.25



Network Prediction

One-core network



Network Prediction

Multi-core network



Network Prediction

Cross-over network
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Protein-Protein Interaction Networks?

• Protein are nodes

• Interactions are edges

Yeast PPI network
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Introduction to graph theory

� Graph – mathematical object consisting of a set of:

�V = nodes (vertices, points).

�E = edges (links, arcs) between pairs of nodes.

�Denoted by G = (V, E).

�Captures pairwise relationship between objects.

�Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { {1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8}, {4,5}, {5,6} }

n = 8

m = 11



Random network

• Connect each pair of node with prob p

• Expect value of edge is pN(N-1)/2

• Poisson distribution

– The node with high degree is rare



Scale-free network

• Power-law degree distribution

• Hubs and nodes

• When a node add into network, it prefer to 

link to hubs



Hierarchical network

• Preserves network “modularity” via a 

fractal-like generation of the network



Hierarchical network



• 3 types (modes) of comparative methods:

1. Network alignment

2. Network integration

3. Network querying

Types of Network Comparisons



1. Network alignment:

• The process of comparison of two or more 
networks of the same type to identify regions of 
similarity and dissimilarity

• Commonly applied to detect subnetworks that 
are conserved across species and hence likely to 
present true functional modules

Types of Network Comparisons



2. Network integration:

• The process of combining networks encompassing 
interactions of different types over the same set of 
elements (e.g., PPI and genetic interactions) to study 
their interrelations

• Can assist in uncovering protein modules supported 
by interactions of different types

Types of Network Comparisons



• A grand challenge:

Types of Network Comparisons



3. Network querying:

• A given network is searched for subnetworks 
that are similar to a subnetwork query of interest

• This basic database search operation is aimed 
at transferring biological knowledge within and 
across species 

• Currently limited to very sparse graphs, e.g., 
trees

Types of Network Comparisons



3. Network querying

Types of Network Comparisons

� Useful application for biologists: given a 
candidate module, align to a database of 
networks (“query-to-database”)

Query: Database:



Summary

Types of Network Comparisons

Sharan and Ideker (2006) Nature Biotechnology 24(4): 427-433



Network Alignment

• Finding structural similarities between two networks



• Methods vary in these aspects:

A. Global vs. local

B. Pairwise vs. multiple

C. Functional vs. topological information

Network Alignment



• Methods vary in these aspects:

A. Global vs. local

B. Pairwise vs. multiple

C. Functional vs. topological information

A.Local alignment: 

� Mappings are chosen independently for each region of 

similarity

� Can be ambiguous, with one node having different 

pairings in different local alignments

� Example algorithms: 

PathBLAST, NetworkBLAST, MaWISh, Graemlin

Network Alignment



• Methods vary in these aspects:

A. Global vs. local

B. Pairwise vs. multiple

C. Functional vs. topological information

A.Global alignment: 

� Provides a unique alignment from every node in the 

smaller network to exactly one node in the larger 

network

� May lead to inoptimal matchings in some local regions

� Example algorithms: 

IsoRank, IsoRankN, Graemlin 2, GRAAL, H-GRAAL

Network Alignment



• Methods vary in these aspects:

A. Global vs. local

B. Pairwise vs. multiple

C. Functional vs. topological information

B.Pairwise alignment: 

� Two networks aligned

� Example algorithms: 

GRAAL, H-GRAAL, PathBLAST, MaWISh, IsoRank

Multiple alignment: 

� More than two networks aligned

� Computationally more difficult than pairwise alignment

� Example algorithms:

Greamlin, Extended PathBLAST, Extended IsoRank

Network Alignment

a b

c

d



• Methods vary in these aspects:

A. Global vs. local

B. Pairwise vs. multiple

C. Functional vs. topological information

C.Functional information
� Information external to network topology (e.g., protein sequence) used to 

define “similarity” between nodes

� Careful: mixing different biological data types, that might agree or contradict

Topological information
� Only network topology used to define node “similarity”

� Good – since it answers how much and what type of biological information  

can be extracted from topology only

Network Alignment



• In general, the network alignment problem is computationally 

hard (generalizing subgraph isomorphism)

• Hence, heuristic approaches are devised

• For now, let us assume that we have a heuristic algorithm for 

network alignment

• How do we measure the quality of its resulting alignments?

Network Alignment



• Key algorithmic components of network 

alignment algorithms:

– Node similarity measure

– Rapid identification of high-scoring alignments 

from among the exponentially large set of possible 

alignments

Network Alignment



• How is “similarity” between nodes defined?

• Using information external to network topology, e.g., the 
sequence alignment score

• Homology, E-values, sequence similarity vs. sequence identity…

• Using only network topology, e.g., node degree, 

• Using a combination of the two

Network Alignment



Network Alignment

� How to identify high-scoring alignments?

� Idea: seeded alignment

�Inspired by seeded sequence alignment (BLAST)

�Identify regions of network in which “the best” 

alignments likely to be found



• How to identify high-scoring alignments?
• Greedy seed and extend approaches

• Use the most “similar” nodes across the two 

networks as “anchors” or “seed nodes” 
• “Extend around” the seed nodes  in a greedy fashion
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Network Alignment

• How to identify high-scoring alignments?
• Greedy seed and extend approaches
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Network Alignment

• How to identify high-scoring alignments?
• Greedy seed and extend approaches

• Use the most “similar” nodes across the two 

networks as “anchors” or “seed nodes”
• “Extend around” the seed nodes in a greedy fashion



Take home message

• Binary prediction of Protein-protein 

Interaction (PPI)

• Analysis of PPI networks
• Different topologies of network

• Different type of network comparison

• Basic ideas of network alignment

• Structural modeling of PPI

• Physical properties of PPI
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Two bases are compatible if their signatures 

match
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Template-based modeling: general 

methodology

• Dimeric threading

• Monomer threading and oligomer 

mapping

• Template-based docking
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Brownian Dynamics (BD)

• The dynamic contributions of the solvent are 
incorporated as a dissipative random force (Einstein’s 
derivation on 1905). Therefore, water molecules are not 
treated explicitly.

• Since BD algorithm is derived under the conditions that 
solvent damping is large and the inertial memory is lost 
in a very short time, longer time-steps can be used.

• BD method is suitable for long time simulation.



Algorithm of BD

The Langevin equation can be expressed as

Here, ri and mi represent the position and mass of atom i, respectively. ζi is a frictional 
coefficient and is determined by the Stokes’ law, that is, ζi = 6πai

Stokesη in which ai
Stokes is a 

Stokes radius of atom i and η is the viscosity of water. Fi is the systematic force on atom i. Ri is a 
random force on atom i having a zero mean <Ri(t)> = 0 and a variance <Ri(t)Rj(t)> = 6ζikTδijδ(t); 
this derives from the effects of solvent.

For the overdamped limit, we set the left of eq.1 to zero,

The integrated equation of eq. 8 is called Brownian dynamics;

where Δt is a time step and ωi is a random noise vector obtained from Gaussian distribution.
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Brownian dynamic simulation of protein association
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Computational simulation of binding affinity: 

thermodynamic cycles



Summary

• Binary prediction of Protein-

protein Interaction (PPI)

• Analysis of PPI networks

• Structural modeling of PPI

• Physical properties of PPI


