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•Reduction in degrees of freedom

•Fast frequency movements removed

•Smoother potential surface

•Longer time steps can be taken

•Microsecond simulations possible

All atom: 
time step of 1-2 fs, 
time frame sampled ~100 ns

Coarse-grained: 
time step of 20-50 fs, 
time frame sampled ~1 µs

Background: Why Coarse-graining (CG) ?

All atom: 
each particle represent one atom
Maximally can handle n-atom system

Coarse-grained: 
each particle represent m atom
Maximally can handle mn-atom system
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Background: How Coarse-graining (CG) ?

How to give a simplified representation for 
biomolecule with reasonable accuracy    
(CG model).

How to get the correct interactions between 
different simplified sites within the models 
(Force Mapping). 

MATINI is a software to do CG simulations.
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CG Simulation: Simplified Representation 

Coarse-grained Model of Phosphor-lipid
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CG Simulation: Simplified Representation 

Coarse-grained Model of Protein Side-chain: Mapping Sites
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CG Simulation: Simplified Representation 

Coarse-grained Model of Protein Main-chain: Degrees of Freedom
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CG Simulation: Simplified Representation 

Comparison between All Atom Model and Coarse-grained Model
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CG Simulation: Force Field Parameterization 

Bonded Interactions

Bonded interactions are described by the 
following set of potential energy functions 
acting between bonded sites i, j, k, and l with 
equilibrium distance, angle, and dihedral.

The force constants K are generally weak, 
inducing flexibility of the molecule at the 
coarse-grained level mimicking the 
collective motions at the fine-grained level. 
The bonded potential is used for chemically 
bonded sites and the angle potential to 
represent chain stiffness.

The improper dihedral angle potential is 
used to prevent out-of-plane distortions of 
planar groups. Proper dihedrals are used to 
impose secondary structure of the peptide 
backbone.c
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CG Simulation: Force Field Parameterization 

Calculating bonded force constants: 1) deriving distributions from PDB

The bond lengths, bond angles, dihedral 
angles, and their respective force constants, 
collectively referred to as the bonded 
parameters, were obtained from 
distributions derived from the PDB. 

Chose a representative subset of 
approximately 2000 proteins from the PDB 
as the basis set for our parametrization. 

The secondary structure of every residue of 
these proteins was determined using the 
program DSSP.

Using the center of mass of the atoms 
representing each coarse-grained bead, 
calculated the distributions of the bond 
lengths, bond angles, and dihedral angles.
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CG Simulation: Force Field Parameterization 
Calculating bonded force constant: 2) deriving force constants against 

distributions of PDB

After the distributions were 
obtained, simulations were 
performed on short test peptides, 
with different sequences and 
secondary structure 
characteristics. 

All of the bonded parameters were 
optimized by matching the PDB 
distributions of the bonds angles 
and dihedrals with the distributions 
obtained from the simulations, 
using an iterative procedure.



13

CG Simulation: Force Field Parameterization 

Non-bonded Interactions: Lennard-Jones Potential

The strength of the interaction, determined by the value of the well depth εij
depends on the interacting particle types.

The value of ε ranges from εij ) 5.6 kJ/mol for interactions between strongly 
polar groups to εij ) 2.0 kJ/mol for interactions between polar and apolar groups 
mimicking the hydrophobic effect. 

The effective size of the particles is governed by the LJ parameter: σ ) 0.47 nm 
for all normal particle types.
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CG Simulation: Force Field Parameterization 

Non-bonded Interactions: Interaction Matrix

Deriving the parameters in the matrix by the same procedure that was used to 
derive the parameters for the bonded interactions
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CG Simulation: Force Field Parameterization 

Non-bonded Interactions: Coulombic Potential

charged groups (type Q) bearing a charge q interact 
via a Coulombic energy function with a relative 
dielectric constant εrel ) 15 for explicit screening.
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CG Simulation: Application

SNARE-mediated membrane fusion

a) The two membranes are in the vicinity of each other but the SNAREs are not yet in contact. 

b) SNARE complexes start zipping from the amino-terminal end, which draws the two membranes further 

towards each other. 

c) Zipping proceeds, causing increased curvature and lateral tension of the membranes, exposing the bilayer 

interior.

d) The highly unfavorable void space at the membrane junction in (c) causes the establishment of contacts 

between the distal membrane leaflets. 

e) The lateral tension in the trans-bilayer contact area induces membrane breakdown, yielding a fusion pore. 

f) The fusion pore expands and the membrane relaxes. 
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CG Simulation: Application

SNARE-mediated membrane fusion: initial set-up
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CG Simulation: Application

SNARE-mediated membrane fusion: stalk formation during simulation
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CG Simulation: Application

SNARE-mediated membrane fusion: four stages of fusion

A) I: Stalk, II : inverted micelle intermediate (IMI; single SNARE complex), III: Hemifusion-diaphragm (single SNARE 

complex), IV: fusion. B) Cross-sections of the fusion plane showing the transition from stage I (stalk) to stage II (inverted 

micelle) in more detail. The stalk (664 ns), shows a worm-like expansion (740 ns) and eventually, after bending (920 ns), 

forms a closed ring that encapsulates exterior solvent forming an inverted micelle (968 ns).
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� SNARE complex is driven towards the perimeter of 
the fusion region

� SNARE complexes induce stalk formation and 
actively opens fusion pores

� Intrinsic properties of trans-membrane regions 
facilitate stalk formation

� SNARE complexes release their energy throughout 
the whole fusion process up to the expansion of the 
fusion pore

CG Simulation: Application

SNARE-mediated membrane fusion: conclusions
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Beyond MARTINI

Domain-based Coarse-graining

Voth Group
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Beyond MARTINI

Voth Group

Coarse-graining the molecule into functional units
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Beyond MARTINI
Optimizing the number of coarse-grained sites in different components of large 

bio-molecular complexes
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A multi-scale nature of 
biological systems
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Organism level

Tissue level

Cellular level

Subcellular level

Molecular level

Atomic level

A multi-layer network topology to describe 
the biological systemsExp Comp
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Organism level

Tissue level

Cellular level

Subcellular level

Molecular level

Atomic level

Simulations of multi-cellular systems 
Exp Comp
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Multi-scale Modeling: Cellular Simulation

The multi-scale model of cell population growth

Intracellular Signaling 

Pathways

Intracellular Signaling 

Pathways
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Multi-scale Modeling: Cellular Simulation

Moving Sets
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Multi-scale Modeling: Cellular Simulation

Lattice-based Simulations
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Multi-scale Modeling: Cellular Simulation

Simulation results of normal cells
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Multi-scale Modeling: Cellular Simulation

Simulation results of tumor cells
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The multi-scale simulations show the 
dynamics of cell populations and their 
responses to nutrient shortage.

Tumour cells take over the space originally 
occupied by normal cells and keep growing 
in the hypoxic areas, owing to their higher 
rates of oxygen consumption.

Multi-scale Modeling: Cellular Simulation

Conclusions
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Organism level

Tissue level

Cellular level

Subcellular level

Molecular level

Atomic level

Bridge the gap between molecules and cells
Exp Comp
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Cadherin-mediated Cell Adhesion

Nature Reviews Molecular Cell Biology, October, (2004). K. Hatta e.t. (1986) Nature.

Cells Expressing 

E-Cadherin

Cells Expressing 

N-Cadherin

Cancer 

Metastasis

Tissue 

Morphogenesis



S8N20

W59
Q23

K25

N27

Jin X, Harrison O, et. al., Structure (2011)

Molecular Structure of Type-I Classical Cadherin

Cis binding too weak to be measured

AUC can only measure 3D binding affinity



From 3D to 2D Binding Affinity: Theory and Simulations
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Cadherin clustering: Anisotropic Lattice MC Simulation



Cadherin clustering: Simulation versus Experiements

Cis mutant: Trans  yes; Cis no Wildtype: Trans  yes; Cis  yes
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Subcellular 

Level

Cellular 

Level

Molecular 

Level

Beyond the molecular level
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Individual-based Cellular Simulation

� Voronoi tessellation as the representation of cell geometry
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� Hamiltonian function describing cell-cell interactions

� Use simulated annealing to search the energy minimal state

Junction simulation



γ(N, N) , γ(E, E)  > γ(N, E)

Cells Expressing 

E-Cadherin

Cells Expressing 

N-Cadherin

From Cadherin Binding Specificity to Cell Aggregation

γ(N, N)  > γ(N, E) > γ(E, E) γ(N, E) > γ(N, N) , γ(E, E)  



Cell-aggregation Exp

Mol-biology Exp
Molecular Simulation

Subcellular Simulation

Cellular Simulation

Summary

Liposome Exp
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Driven Forces ?

Physical-chemical principles

Interactions between atoms in 

the molecule

Physical-based potential Knowledge-based potential

Protein Folding
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David Shaw Group

Physical-based Potential



48

Knowledge-based Potential

The energy of a residue 

pair between residue type 

i and j with distance r
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The problem of knowledge-based potential 

to study protein folding

Can we get insights from other disciplines ?
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Fold Proteins by Genetic Evolution

Evolution Patterns

Correlated mutations carry information about distance relationships in protein structure.
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Fold Proteins by Genetic Evolution

These patterns can be used to predict residue contacts in proteins
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Fold Proteins by Genetic Evolution

Predicted contacts can be transferred into potential to fold proteins 
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Fold Proteins by Genetic Evolution

Results
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Three-dimensional structure from coevolution 
patterns—why does it work?

– Precise information in the evolutionary sequence record.

– Growth in sequence databases from massively parallel 
sequencing.

– Reduction of conformational search space by cooperative 
probability models.

Fold Proteins by Genetic Evolution

Conclusions
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Fold Proteins by Genetic Evolution

Future Directions
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Background

There are high concentrations of macromolecules in living cells

The crowding effect can make 
molecules in cells behave in 
radically different ways than in test-
tube assays. 

Consequently, measurements of 
the properties of enzymes or 
processes in metabolism that are 
made in the laboratory (in vitro) in 
dilute solutions may be different by 
many orders of magnitude from the 
true values seen in living cells (in 

vivo). 

The study of biochemical processes 
under realistically crowded 
conditions is very important, since 
these conditions are a ubiquitous 
property of all cells and crowding 
may be essential for the efficient 
operation of metabolism.
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Background

Crowding effects alter molecular properties 

)(invitroGij∆

)(invivoGij∆

The size of the crowding effect 
depends on both the molecular 
mass and shape of the molecule 
involved.

This excluded volume effect alters 
the rates and equilibrium 
constants of molecular reactions.

This effect alters dissociation 
constants of macromolecules, 
such as when multiple proteins 
come together to form protein 
complexes, or when DNA-binding 
proteins bind to their targets in 
the genome, or enzyme reactions 
involving small molecules in 
solvent.
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Simulate Crowded Cellular Environment

Model Setup

Skolnick Group & Elcock Group
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Simulate Crowded Cellular Environment

Simulation Trajectory
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Simulate Crowded Cellular Environment

Simulation Results: Diffusion
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Simulate Crowded Cellular Environment

Simulation Results: Stability

The excluded-volume (crowding) effect experienced by proteins significantly stabilizes their folded states 
relative to their unfolded states. 

The effect is counterbalanced by the more favorable energetic interactions engaged in by the unfolded 
state conformations.

These results suggest that differences between the in vitro and in vivo thermodynamic stabilities will vary 

significantly with the identity of the protein.
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Simulate Crowded Cellular Environment

Simulation Results: Binding

Excluded-volume crowding effect, which alone stabilizes dimers relative to 
separated monomers is largely cancelled by the more favorable energetic 
interactions that the monomers form with the cytoplasm constituents.
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Simulate Crowded Cellular Environment

Summary and Conclusions

Developing computational models of intracellular environments is 
the route to understanding differences between biomolecular
behavior observed in vitro and in vivo.

The simulation model successfully describes the relative 
thermodynamic stabilities of proteins measured in E. coli, and shows 
that effects additional to the "crowding" effect must be included in 
attempts to understand macromolecular behavior in vivo.

the simulation approach offers a potentially important complement to 
experimental techniques and provides a vivid illustration of 
molecular behavior inside a biological cell
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Simulate Crowded Cellular Environment

Future Directions

The internal conformational variations of 
macromolecules or transitions between 
different states in molecular motors.

Effects from cellular compartmentation and 
cytoskeleton.

Real biological applications.



67

Outline

� Modeling and Simulating Larger Molecular Systems with 

Longer Time Scales

� Coarse-grained simulation

� Multi-scale modeling

� Extend the Applications of Structural Biology to 

Newly Emerging Fields
� Fold proteins by information from genetics

� Simulating  crowded cellular environment

�Combining structural biology with systems biology

� Summary and Perspective



68

Predicting protein-protein interactions

Background: Protein-protein interactions (PPIs)

PPIs are involved in many 

biological processes:

Signal transduction

Protein complexes or 

molecular machinery

Protein carrier

Protein modifications 

(phosphorylation)

…

PPIs prediction: predict if two proteins interact with each other or not, 

given their sequences.
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Predicting protein-protein interactions

Background: experimental methods

The first comprise and ‘atomic observation’ in which the protein 
interaction is detected using, for example, X-ray crystallography. 
These experiments can yield specific information on the atoms or 
residues involved in the interaction.
The second is a ‘direct interaction observation’ where protein 
interaction between two partners can be detected as in a two-hybrid 
experiment.
At a third level of observation, multi-protein complexes can be 
detected using methods such as immuno-precipitation or mass-
specific analysis. This type of experiment does not unveil the 
chemical detail of the interactions or even reveal which proteins are 
in direct contact but gives information as to which proteins are found 
in a complex at a given time.
The fourth category comprises measurements at the cellular level, 
where an ‘activity bioassay’ is used to observe an interaction; for 
example, proliferation assays of cells by a receptor-ligand 
interaction.
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Recent advances in proteomics technologies such as two-hybrid, 
phage display and mass spectrometry have enabled us to create a 
detailed map of biomolecular interaction networks. Initial mapping 
efforts have already produced a wealth of data. As the size of the 
interaction set increases, databases and computational methods will 
be required to store, visualize and analyze the information in order 
to effectively aid in knowledge discovery.

For the protein-protein interactions, there are many 
websites can be reached, here I just show several. 
– BIND (Interaction Network Database) 
– DIP (Database of Interacting Proteins) 
– Protein-Protein Interaction Server
– Protein-Protein Interface

Predicting protein-protein interactions

Background: PPIs databases

Problem: too much information, many false 

positives and hard to prove.
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Predicting protein-protein interactions

Idea: what computational structural biologists can do?

Although protein complexes only share remote structural similarity, they 

sometimes tend to bind with each other with conservative interfaces.

Can we use this structural information to help PPI prediction? 
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Predicting protein-protein interactions

Method: prediction procedure

Honig Lab
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Predicting protein-protein interactions

Method: model evaluation
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Predicting protein-protein interactions

Prediction results
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Predicting protein-protein interactions

Prediction results
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Predicting protein-protein interactions

Prediction results
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Predicting protein-protein interactions

Summary and Conclusions

It has been demonstrated that even distantly related proteins 
often use regions of their surface with similar arrangements of 
secondary structure elements to bind to other proteins, 
considerably expanding the number of putative PPIs that can 
be identified.

The study suggests the ability to add a structural ‘face’ for a 
large number of PPIs, and that structural biology can have an 
important role in molecular systems biology.

Different methods with diverse backgrounds can be integrated 
to effectively remove false positives in PPI interactome.
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