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< Modeling and Simulating Larger Molecular
Systems with Longer Time Scales

< Coarse-grained simulation




Background: Why Coarse-graining (CG) ?

*Reduction in degrees of freedom
*Fast frequency movements removed
*Smoother potential surface

Longer time steps can be taken
*Microsecond simulations possible

Coarse-grained: Coarse-grained:
time step of 20-50 fs, each particle represent m atom
time frame sampled ~1 ys Maximally can handle mn-atom system




Background: How Coarse-graining (CG) ?

1 How to give a simplified representation for
biomolecule with reasonable accuracy
(CG model).

1 How to get the correct interactions between
different simplified sites within the models
(Force Mapping).

1 MATINI is a software to do CG simulations.




CG Simulation: Simplified Representation

Coarse-grained Model of Phosphor-lipid
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CG Simulation: Simplified Representation

Coarse-grained Model of Protein Side-chain: Mapping Sites




CG Simulation: Simplified Representation

Coarse-grained Model of Protein Main-chain: Degrees of Freedom




CG Simulation: Simplified Representation

Comparison between All Atom Model and Coarse-grained Model
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CG Simulation: Force Field Parameterization

Bonded Interactions
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Bonded interactions are described by the
following set of potential energy functions
acting between bonded sites i, j, k, and | with
equilibrium distance, angle, and dihedral.

The force constants K are generally weak,
inducing flexibility of the molecule at the
coarse-grained level mimicking the
collective motions at the fine-grained level.
The bonded potential is used for chemically
bonded sites and the angle potential to
represent chain stiffness.

The improper dihedral angle potential is
used to prevent out-of-plane distortions of
planar groups. Proper dihedrals are used to
impose secondary structure of the peptide
backbone.c




CG Simulation: Force Field Parameterization

Calculating bonded force constants: 1) deriving distributions from PDB

The bond lengths, bond angles, dihedral
angles, and their respective force constants,
collectively referred to as the bonded
parameters, were obtained from
distributions derived from the PDB.

Chose a representative subset of
approximately 2000 proteins from the PDB
as the basis set for our parametrization.

The secondary structure of every residue of
these proteins was determined using the
program DSSP.

Using the center of mass of the atoms
representing each coarse-grained bead,
calculated the distributions of the bond
lengths, bond angles, and dihedral angles.
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CG Simulation: Force Field Parameterization

Calculating bonded force constant: 2) deriving force constants against
distributions of PDB

. After the diStribUtions Were Table 3. Backbone Bonded Parameters
obtained, simulations were Kee

dgs (kJ nm™2 Oggg Kgaa peee Kaeee

performed on short test peptides, backbone (nm) mol ") _(deg) (kimol ) (deg) (ki mol )

with different sequences and T A

extended 0.35 1250 134 25 180 10

secondary structure tun 035 500 100 25
. . bend 0.35 400 130 25
characteristics.

2 fppe = 98° when Proline is in the helix; Kgg = 100 kJ mol .

A" Of the bOnded parameters were Table 5. Equilibrium Angles, Improper Dihedral Angles

and Force Constants for Side Chains

optimized by matching the PDB r— ) oo K mo )
distributions of the bonds angles foss (o) 100 25
and dihedrals with the distributions Gt . 2 o
obtained from the simulations,

using an iterative procedure. yesss (Ho, Ty, Pho) 0

ysss (Trp)

50
0 50, 200

side chain i (deg) K (kJ rad—2 mol™ ")




CG Simulation: Force Field Parameterization

1 The strength of the interaction, determined by the value of the well depth &ij
depends on the interacting particle types.

The value of € ranges from ¢ij ) 5.6 kd/mol for interactions between strongly
polar groups to €ij ) 2.0 kd/mol for interactions between polar and apolar groups
mimicking the hydrophobic effect.

The effective size of the particles is governed by the LJ parameter: ¢ ) 0.47 nm
for all normal particle types.




CG Simulation: Force Field Parameterization

Non-bonded Interactions: Interaction Matrix

TABLE 1: Interaction Matrix?
Q
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@ Level of interaction indicates the well depth in the LT potential: O. € = 5.6 kJ/mol: I. ¢ = 5.0 kJ/mol: II. € = 4.5 kJ/mol: III, € = 4.0 kJ/mol;
IV. € = 3.5 kl/mol: V, € = 3.1 kI/mol; VI, ¢ = 2.7 kl/mol; VIIL, ¢ = 2.3 kI/mol: VIII, € = 2.0 kl/mol; IX, € = 2.0 kJ/mol. The LJ parameter ¢
= 0.47 nm for all interacion levels except level IX for which o = 0.62 nm. Four different CG sites are considered: charged (Q). polar (P), nonpolar
(N). and apolar (C). Subscripts are used to further distinguish groups with different chemical nature: 0. no hydrogen-bonding capabilities are
present; d. groups acting as hydrogen bond donor: a, groups acting as hydrogen bond acceptor: da, groups with both donor and acceptor options;
1—5. indicating increasing polar affinity.

1 Deriving the parameters in the matrix by the same procedure that was used to

derive the parameters for the bonded interactions
14




CG Simulation: Force Field Parameterization

1 charged groups (type Q) bearing a charge q interact
via a Coulombic energy function with a relative
dielectric constant erel ) 15 for explicit screening.




CG Simulation: Application

SNARE-mediated membrane fusion

b Zipping ¢ Hemifusion

Nature Reviews | Malecular Cell Bioloav

The two membranes are in the vicinity of each other but the SNAREs are not yet in contact.

SNARE complexes start zipping from the amino-terminal end, which draws the two membranes further
towards each other.

Zipping proceeds, causing increased curvature and lateral tension of the membranes, exposing the bilayer
interior.

The highly unfavorable void space at the membrane junction in (c) causes the establishment of contacts
between the distal membrane leaflets.

The lateral tension in the trans-bilayer contact area induces membrane breakdown, yielding a fusion pore.
The fusion pore expands and the membrane relaxes.




CG Simulation: Application

SNARE-mediated membrane fusion: initial set-up

,

Current Opinion in Structural Biology




CG Simulation: Application

SNARE-mediated membrane fusion: stalk formation during simulation




CG Simulation: Application

SNARE-mediated membrane fusion: four stages of fusion

A) I: Stalk, Il : inverted micelle intermediate (IMI; single SNARE complex), Ill: Hemifusion-diaphragm (single SNARE
complex), IV: fusion. B) Cross-sections of the fusion plane showing the transition from stage | (stalk) to stage Il (inverted
micelle) in more detail. The stalk (664 ns), shows a worm-like expansion (740 ns) and eventually, after bending (920 ns),
forms a closed ring that encapsulates exterior solvent forming an inverted micelle (968 ns).




CG Simulation: Application

“* SNARE complex is driven towards the perimeter of
the fusion region

“* SNARE complexes induce stalk formation and
actively opens fusion pores

“ Intrinsic properties of trans-membrane regions
facilitate stalk formation

“* SNARE complexes release their energy throughout
the whole fusion process up to the expansion of the
fusion pore




Beyond MARTINI

Voth Group

Domain-based Coarse-graining




Beyond MARTINI

Coarse-graining the molecule into functional units

22




Beyond MARTINI

bio-molecular complexes

Generate all-atom
MD trajectory(-ies)

¥

Choose the threshold
length L for the complex

Calculate the covariance matrix
for biomolecule 1

Calculate the covariance matrix
for biomolecule P

'

L

Calculate y,° for various numbers
of CG sites in biomolecule 1 n;

Calculate y,* for various numbers
of CG sites in biomolecule P np

'

Choose the optimal number of CG
sites 7, using egs. (8) and (9)

Choose the optimal number of CG
sites np_ using egs. (8) and (9)

4

Find the CG mapping for

biomolecule 1 for the given n;’
|

Find the CG mapping for

biomolecule P for the given np’
¥

|

Join CG mappings of different parts together
to get the CG model for the whole complex

Actin: 212 CG sites

Optimizing the number of coarse-grained sites in different components of large

Actin: 264 CG sites
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< Modeling and Simulating Larger Molecular
Systems with Longer Time Scales

“+» Multi-scale modeling




A multi-scale nature of
biological systems

Macroscopic (organ)

Microscopic
(tissue/multicellular)

E
1
E
E

Molecular

Hm—mm
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nm—pm

Atomic

Min-Hour Day-Year
Time




A multi-layer network topology to describe
the biological systems

Atomiclevel

Tissuelevel

—
Organism level




Simulations of multi-cellular systems

Tissuelevel

—
Organism level




Multi-scale Modeling: Cellular Simulation

The multi-scale model of cell population growth
diffusible species < ﬂ:ql'gm > -

cycle-based cells

cellular layer

normal cells

LILLIJELIRERRE IO NI R In ) IO R Al IR

subcellular layer cell cyclejapoptosis{cell cycle|apoptosis

Intracellular Signaling Intracellular Signaling
Pathways Pathways




Multi-scale Modeling: Cellular Simulation

Moving Sets
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Multi-scale Modeling: Cellular Simulation

Lattice-based Simulations

Cell quiescence
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Multi-scale Modeling: Cellular Simulation

Simulation results of normal cells

oxygen concentration oxygen concentration
I{}.E)ﬁ?ﬁ ' 0.0675

0.0665 0.0527
0.0655 0.0378

| 0.0646 | 0.0230

0.0636 0.00811

oxygen concentration oxygen concentration

l 0.0675 ' 0.0675
0.0526 0.0515
0.0376 0.0354

| 0.0227 | 0.0194

0.00772 0.00336




Simulation results of tumor cells

OXygen concentration

OXygen concentration
. 0.225

0.170
0.115
l 0.0597

D.00466

Multi-scale Modeling: Cellular Simulation

oxygen concentration
l{]'.EEE-

0.175
0.126
I{}.{}?ﬁl

0.0266

oxygen concentration
.{}.335

0.170
0114
|{]'.{]':': 57

0.00330




Multi-scale Modeling: Cellular Simulation

Conclusions

1 The multi-scale simulations show the
dynamics of cell populations and their
responses to nutrient shortage.

1 Tumour cells take over the space originally
occupied by normal cells and keep growing
in the hypoxic areas, owing to their higher
rates of oxygen consumption.




Bridge the gap between molecules and cells

Tissuelevel

—
Organism level




Background

7 { 6.0,y Solvent System (3D) ! ?iﬂi&ﬂystem (2D)

2D Chemlstry

rfr W #

Membrane receptor clustering




Cadherin-mediated Cell Adhesion

Clapjuniction

Integrin

Selectin

Focal adhesion Hemi-desmosome Integrin Membrane proteoglycan

Cells Expressing
E—é‘a!!l.:l_n‘_erin

Cadherins
Integrins
Basement

-, membrane

-.ECM

Cells Expressing
-Cadherin

5

o) Association with
d platelets and leukocytes

&/ Homing/extravasation

¥ —
@'f-‘-"t‘:‘-? Metastasis
)
. N (=] I
Nature Reviews Molecular Cell Biology, October, (2004). K. Hatta e.t. (1986) Nature. 100 prm




¥ .’ trans
+ strand swap interface
r

cis interface

AUC can only measure 3D binding affinity
Cis binding too weak to be measured

Jin X, Harrison O, et. al., Structure (2011)




Produced with VideoMach Produced with VideoMach
www.videomach.com www.videomach.com

s jﬂn[(A w, (1-cosAG, )] AG(3D)=89RT
Poly 4Ny, (1-cos A6, ) AG(2D)=5.1RT

AG*P(trans )= AG®® (trans )— RT{IH[

Ay, (1-cosAG, )h, j AGCP (cis)=1.5RT

AGEP cis)— AGZ2 (cis) = ZRTln[

Ay, (1-cos A, )h, AGy(}TD) (cis)=6.8RT







Cadherin clustering: Simulation versus Experiements

Cis mutant: Trans ves; Cis no Wildtype: Trans ves; Cis yes

AG P (trans ) = 5.7RT

E Produced with VideoMach B
www.videomach.com e
]




Beyond the molecular level

Molecular
Level

Subcellular
Level

Cellular
Level




Junction simulation

» Hamiltonian function describing cell-cell interactions

» Use simulated annealing to search the energy minimal state




@
e e e @ o e e o0 © 2 [ ] .o LR
o® e ge o o

@
e e ©
@
L] ® [} @
® L
ee” o o g0 e ©® . S
e 00 ©O L] ’“’ucz\n&hare“‘
o ® o
@ @
@

o
® %%,

°0 9 4

° ‘o. ® o0
LA L o "o

L ] @ o ® g0 0 0

® 0 000 00 O 0 00 ® & 00 00 O 0 00
® 0 000 0 0 0 00 ® @ 0 09 0 0 0 0 00

), Y(E, E) >y(N, E) ) >y(N, E) >vy(E, E) y(N, E) > y(N, N), y(E, E)

Cells Expressing Cells Expressing
E#Cadherin N-Cadherin

¢

100 pm




Summary

ubcellul ulation

EReggdregation Exp Cellular Simulation
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< Extend the Applications of Structural Biology to
Newly Emerging Fields

< Fold proteins by information from evolution




Proteins don't have a "folding problem”...
. it's we humans that dol

UM-BUT DosddriLL
WHEH Why?

Physical-based potential Knowledge-based potential
46




Physical-based Potential
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Knowledge-based Potential

The energy of a residue
pair between residue type
1 and j with distance r

all observed
residue pair
betweeniandj
with distance r

Protein
Structure
Database

—e—ILE-LEU 1
—e—LYS-ARG 1




The problem of knowledge-based potential
to study protein folding

Can we get insights from other disciplines ?




Fold Proteins by Genetic Evolution

Evolution Patterns

Correlated mutations carry information about distance relationships in protein structure.
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Fold Proteins by Genetic Evolution

These patterns can be used to predict residue contacts in proteins

RAS oncoprotein

*
E™
o

t“ + +
gy & F
¥
»
, B 00 Global
+
é .. . Mmodel , .
r *
r *
*“1. ..k‘: e HEY

Residua number

Local % .d
model ol
(Y _‘F 1
r:.‘

%0 40 &0 80 100 120 140 160
Residus number

Bacterial G-3-P transporter
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Align evolutionary
diverged sequences

48

Calculate covariance matrix for each C,_;(A.B) = ‘f,E(A!B) = -I;(A)P_J(B)
pair of sequence positions for all
pairs of amino acids (A B) C,;'(A‘B) = —e”(A,H)

P

Fold Proteins by Genetic Evolution

Predicted contacts can be transferred into potential to fold proteins

J @ Y%
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o <S==mi ¢, high ranking
transitive
‘indirect correlations’

v ]

1 ~ =
PP (AB) = exple,(AB) + i (A) + i, (B)} @

Identify maximally informative pair Z
couplings using statistical model of
entire protein to infer residue-residue
co-evolution

pI, = Y P™(4,B)l
£ 2 ;4B r(B)

Analyze the highest scoring pairs to produce
ranked list of residue pairs which we predict to be
close in 3D space. Use these pairs as predicted
close “evolutionary inferred contacts” , EICs, in
folding calculations

Start with extended structure

use distance geometry and simulated
annealing with predicted constraints, EICs,
to fold the chain

Rank predicted structures using quality
measure of backbone alpha tarsion and
beta sheet twist
bad scores

P (A.B)

—

re-ranked correlations
"direct information’ = DI

pred\cied contacts [E\Cs}.




Fold Proteins by Genetic Evolution

predicted observed
blind top ranked crystal structure
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Fold Proteins by Genetic Evolution

Conclusions

1 Three-dimensional structure from coevolution
patterns—why does it work?

— Precise information in the evolutionary sequence record.

— Growth in sequence databases from massively parallel
sequencing.

— Reduction of conformational search space by cooperative
probability models.




Fold Proteins by Genetic Evolution

Evolutionary record
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Future Directions

With athers

With ligands
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Human 2 adrenergic receptor Human nociception receptor

Conformational plasticity
G-3-P transporter GlpT
H2 HH

Open conformation Closed conformation
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< Extend the Applications of Structural Biology to
Newly Emerging Fields

< Simulating crowded cellular environment




Background

There are high concentrations of macromolecules in living cells

The crowding effect can make
molecules in cells behave in
radically different ways than in test-
tube assays.

Consequently, measurements of
the properties of enzymes or
processes in metabolism that are
made in the laboratory (in vitro) in
dilute solutions may be different by
many orders of magnitude from the
true values seen in living cells (in
Vvivo).

The study of biochemical processes
under realistically crowded
conditions is very important, since
these conditions are a ubiquitous
property of all cells and crowding
may be essential for the efficient
operation of metabolism.




Background

Crowding effects alter molecular properties

The size of the crowding effect

depends on both the molecular
bilieditvg mass and shape of the molecule
Eetins involved.

B -catenin

This excluded volume effect alters
the rates and equilibrium
constants of molecular reactions.

This effect alters dissociation
constants of macromolecules,
B -catenin g such as when multiple proteins

come together to form protein

binding complexes, or when DNA-binding

i proteins bind to their targets in
the genome, or enzyme reactions
involving small molecules in
solvent.

AG, (invivo)




Simulate Crowded Cellular Environment

Model Setup
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Stochastic Dynamics: Equation of Motion

Forces

f_H

Y F, + f.(r)

je(d;<(R, +R_ )

LY_I

Random forces from environment
A

' N
=20'0(r—1), T'=2n°DI

(f(r))=0




Simulate Crowded Cellular Environment

Simulation Trajectory

i




Simulate Crowded Cellular Environment

Simulation Results: Diffusion

* Cfull
O 'steric’

1000
Molecular weight (kDa) Molecular weight (kDa)




Simulate Crowded Cellular Environment

Simulation Results: Stability

2 "full' sampling / "steric’ scoring
| mmmmm Cfull’ sampling / "full’ scoring

'steric' sampling / 'steric’” scoring
full’ sampling / "steric’ scoring
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expanment

I=]
=
=
=
e
=
ik}
=
O
i
2
uw—
Ch
i
=
E L
i
iy
(=) ]
=
11]
=
o

Change in folding free energy (kcal/maol)

Frotein Protein

The excluded-volume (crowding) effect experienced by proteins significantly stabilizes their folded states
relative to their unfolded states.

The effect is counterbalanced by the more favorable energetic interactions engaged in by the unfolded
state conformations.

These results suggest that differences between the in vitro and in vivo thermodynamic stabilities will vary

significantly with the identity of the protein. 63




Simulate Crowded Cellular Environment

Simulation Results: Binding
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1 Excluded-volume crowding effect, which alone stabilizes dimers relative to
separated monomers is largely cancelled by the more favorable energetic
interactions that the monomers form with the cytoplasm constituents.




Simulate Crowded Cellular Environment

1 Developing computational models of intracellular environments is
the route to understanding differences between biomolecular
behavior observed in vitro and in vivo.

The simulation model successfully describes the relative
thermodynamic stabilities of proteins measured in E. coli, and shows
that effects additional to the "crowding" effect must be included in
attempts to understand macromolecular behavior in vivo.

the simulation approach offers a potentially important complement to
experimental techniques and provides a vivid illustration of
molecular behavior inside a biological cell




Simulate Crowded Cellular Environment

Future Directions

1 The internal conformational variations of
macromolecules or transitions between
different states in molecular motors.

1 Effects from cellular compartmentation and
cytoskeleton.

1 Real biological applications.
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< Extend the Applications of Structural Biology to
Newly Emerging Fields

<+ Combining structural biology with systems biology




Predicting protein-protein interactions

Mimgi:s S— PPIs are involved in many

-~ / biological processes:
"W jr.’-- Fair A CF

.""'. . A A = I . .
GREZJN S PAK 2 o 1 Signal transduction
- LK1= EKKS 1 Protein complexes or

Hal KK 1- LRSS .
MERS — _ AKK3f€ molecular machinery

MAPE 1 Protein carrier

1 Protein modifications
(phosphorylation)

PPls prediction: predict if two proteins interact with each other or not,
given their sequences.




Predicting protein-protein interactions

The first comprise and “atomic observation’ in which the protein
Interaction is detected using, for example, X-ray crystallography.
These experiments can yield specific information on the atoms or
residues involved in the interaction.

The second is a ‘direct interaction observation’ where protein
Interaction between two partners can be detected as in a two-hybrid
experiment.

At a third level of observation, multi-protein complexes can be
detected using methods such as immuno- precipitation or mass-
specific analysis. This type of experiment does not unveil the
chemical detail of the interactions or even reveal which proteins are
In direct contact but gives information as to which proteins are found
In a complex at a given time.

The fourth category comprises measurements at the cellular level,
where an ‘activity bioassay’ is used to observe an interaction; for
example, proliferation assays of cells by a receptor-ligand
Interaction.




Predicting protein-protein interactions

Background: PPls databases

1 Recent advances in proteomics technologies such as two-hybrid,
phage display and mass spectrometry have enabled us to create a
detailed map of biomolecular interaction networks. Initial mapping
efforts have already produced a wealth of data. As the size of the
Interaction set increases, databases and computational methods will
be required to store, visualize and analyze the information in order
to effectively aid in knowledge discovery.

For the protein-protein interactions, there are many
websites can be reached, here | just show several.
BIND (Interaction Network Database)
DIP (Database of Interacting Proteins)
Protein-Protein Interaction Server
Protein-Protein Interface

Problem: too much information, many false
positives and hard to prove.




Predicting protein-protein interactions

Idea: what computational structural biologists can do?

&7
IS-score = 0.49, P=1.5 x103 [S-score = 0.43, P=1.1 x10™* [S-score = 0.40, P =3.2 x10
RMSD =2.8 A, Jres = 86%, foon =85% RMSD=2.2 A, Jres = 83%, foon =61% RMSD=3.1 A, Jres = 95%, foon =63%

Although protein complexes only share remote structural similarity, they
sometimes tend to bind with each other with conservative interfaces.

Can we use this structural information to help PPI prediction?




Predicting protein-protein interactions

Method: prediction procedure

PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models sCore
from PDB
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Predicting protein-protein interactions

Method: model evaluation

Template Complex Interaction Model
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Predicting protein-protein interactions

Prediction results
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Prediction results
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Predicting protein-protein interactions

Prediction results

HTP_EXP_Union: 39,993 PrePPI_LAG00: 31,402




Predicting protein-protein interactions

1 It has been demonstrated that even distantly related proteins
often use regions of their surface with similar arrangements of
secondary structure elements to bind to other proteins,
considerably expanding the number of putative PPls that can
be identified.

The study suggests the ability to add a structural ‘face’ for a
large number of PPls, and that structural biology can have an
important role in molecular systems biology.

Different methods with diverse backgrounds can be integrated
to effectively remove false positives in PPl interactome.




Outline

< Summary and Perspective




*

Summary .""..""""""".""""""""""""."

b 2

..IIIIIIIIIIIIIIIIII“

L 4

/ "
Extracellular N -
stimulic h .III‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“

9 .‘:'.IIIIIIIIIIIIIIIll'lIIIIIIIIIIIIIIIIIIIIIIIIIII"..

*

. J, .
O Extracellular
‘ envirénment

intracellular

e .
Spader. ‘ ----------.

Nucle 1s

HACRERRET

Ce"u'ar -‘ / .’..IIIIIIIIIIIIIIIII‘:.IIIIIIIIIIIIIIIIIIIII
responses \ :’IIIIIIIIIIIIIIIIII.'IIIIIIIIIIIIIIIIII 2
% * Py

..llIIIIIIIIIIIIIIIIIIII"

/'4.—._ Lo—l\

.IIIIIIIII"‘

’ " " W]t

L 4 .
A EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS

..IIIIIIIIIIIIIIIII“

*
L 4




Summary

Systems Genetic

Biology Evolution

Structural

Biology




