Modeling Gene Regulatory
Networks (GRN)

Yinghao Wu

Department of Systems and Computational Biology
Albert Einstein College of Medicine
Fall 2014

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
OF YESHIVA UNIVERSITY



Outline

* Introduction to gene regulation
* Construction of GRN

* Modeling the dynamics of
GRN

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Outline

* Introduction to gene regulation
* Construction of GRN

* Unsupervised

* Supervised
* Modeling the dynamics of GRN

 Discrete Models (Boolean Network)

EINSTEIN

\\\\\\\\\\\\\\\\\\\\\\\

* Differential and Stochastic Equations
<ENSEN



Outline

* Introduction to gene regulation
* Construction of GRN

* Modeling the dynamics of
GRN

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

OF YESHIVA UNIVERSITY



1: Proteins interacting with DNA turn genes
on or off in response to environmental
changes

= @Gene expression is the overall process of information
flow from genes to proteins

— Mainly controlled at the level of transcription

— A gene that is “turned on” is being transcribed to produce
MRNA that is translated to make its corresponding protein

— Organisms respond to environmental changes by controlling
gene expression
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1: Proteins interacting with DNA turn genes
on or off in response to environmental

changes

= An operon is a group of
genes under coordinated
control in bacteria

= The lactose (/ac) operon
includes

— Three adjacent genes
for lactose-utilization
enzymes

— Promoter sequence
where RNA
polymerase binds

— Operator sequence is
where a repressor
can bind and block
RNA polymerase
action

OPERON
A

—
SOU Aty Promoter Operator Lactose-utilization genes

gene ’\\
DNA M e

-~
~™~RNA polymerase
Active cannot attach to
Protein repressor promoter

Operon turned off (lactose absent)

/{RNA polymerase )

mRNA

mRNA fi‘/ bound to W\/
Protein é —_— l‘ 1
Z Enzymes for lactose utilization

Lactose Inactive
repressor

Operon turned on (lactose inactivates repressor)
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1: Proteins interacting with DNA turn genes

on or off in response to environmental
changes

= Regulation of the /ac
operon oregon

g:n:ao EOMOLOL Uporator actose-utilization genes
— Regulatory gene codes o MF\\
for a repressor protein . g / Pas
1 —
— In the absence of 1actose, e é petve " camt aiach
the repressor binds to the
operator and prevents

RNA polymerase action W » =
— Lactose inactivates the  ew fi«/ und topromoter -
repressor, so the operator é . g l l
IS unblOCked @ ﬁes fcr til ﬂe
Operon turned on (lactose inactivat p )

L
»g EINSTEIN

Albert Einstein College of Medicine

VVVVVVVVVVVVVVVVVVVV



1: Proteins interacting with DNA turn genes
on or off in response to environmental
changes

= Types of operon control

— Inducible operon (/ac operon)

— Active repressor binds to the operator

— Inducer (lactose) binds to and inactivates the repressor
— Repressible operon (#rp operon)

— Repressor is initially inactive

— Corepressor (tryptophan) binds to the repressor and
makes it active

— For many operons, activators enhance RNA polymerase
binding to the promoter
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2: Differentiation results from the expression
of different combinations of genes

= Differentiation involves cell specialization, in both
structure and function

= Differentiation is controlled by turning specific sets of
genes on or off

® —
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3: DNA packing in eukaryotic chromosomes
helps regulate gene expression

= Eukaryotic chromosomes undergo multiple levels of folding
and coiling, called DNA packing
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3: DNA packing in eukaryotic chromosomes
helps regulate gene expression

— Nucleosomes are formed
when DNA is wrapped around
histone proteins

Metaphase
chromosome

Tight helical fiber jagas.

), (30-nm diameter)

— "“Beads on a string”
appearance

DNA double hellx

— Each bead includes  (2-nm diameter)
DNA plus 8 histone -
molecules

Linker

Nucleosome
(10-nm

“Beads on
a string \?ﬁ ﬁ
‘ - \'

—  String is the linker
DNA that connects
nucleosomes

— Tight helical fiber is a coiling of "
the nucleosome string V.5

dlametep. o g

—  Supercoil is a coiling of the
tight helical fiber

— Metaphase chromosome
represents the highest level of
packing

(300-nm dlameter)‘ <a
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3: DNA packing in eukaryotic chromosomes
helps regulate gene expression

= DNA packing can prevent transcription

Metaphase

chromosome

Tight helical fiber '
)ﬁ)‘ )_ (30-nm diameter)

DNA double helix
(2-nmAdiameter)

fo\

Linker

“Beads on

_ ANucleosome
a string” \

(10-nm
dlameter)

Supercoil 7
| | (300-nm diameter) 7‘—r—’00 —
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4: Complex assemblies of proteins control
eukaryotic transcription

= Eukaryotic genes
— Each gene has its own promoter and terminator

— Are usually switched off and require activators
to be turned on

— Are controlled by interactions between
numerous regulatory proteins and control
sequences
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4: Complex assemblies of proteins control
eukaryotic transcription

= Control sequences

— Promoter
— Enhancer

— Related genes
located on
different
chromosomes
can be
controlled by
similar
enhancer
sequences

Enhancers Promoter
Gene

OL 20000

DNA
Activator
proteins & @

Transcription

factors Oth 9
p:oginsoo%
RNA polymerase @

Bending / {7+
of DNA
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4: Complex assemblies of proteins control
eukaryotic transcription

= Regulatory proteins that

bind to control sequences Ennhanicers Promoter
Gene
— Transcription 005000 '
fact te RNA oA
actors prom_O e Activator &
polymerase binding proteing @
Ti ipti
to the promoter factors | other Q D
_ _ proteins 0
— Activator proteins
bind to DNA RNA polymerase é\\_
enhancers and >

interact with other
transcription factors

— Silencers are
repressors that inhibit
transcription R
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5: Eukaryotic RNA may be spliced in more
than one way

= Alternative RNA splicing
— Production of different mRNAs from the same transcript
— Results in production of more than one polypeptide from the same gene

— (Can involve removal of an exon with the introns on either side
Exons

|

rna BN HE A S

transcript

RNA splicing or

mena (ENEENSE | SN <EDSED
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6: Small RNAs play multiple roles in
controlling gene expression

= RNA interference (RNAI)

— Prevents expression of a gene by
interfering with translation of its RNA
product

— Involves binding of small, complementary
RNAs to mRNA molecules

— Leads to degradation of mRNA or
inhibition of translation
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6: Small RNAs play multiple roles in
controlling gene expression

= MicroRNA

— Single-stranded
chain about 20
nucleotides long

— Binds to protein
complex

— MicroRNA + protein
complex binds to
complementary
MRNA to interfere
with protein
production

miRNA-
protein
complex

mRNA degraded OR Translat-nn hlockad
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7: Translation and later stages of gene
expression are also subject to regulation

= Control of gene expression also occurs with
— Breakdown of mRNA
— Initiation of translation
— Protein activation

— Protein breakdown

Folding of
polypeptide and

T formation of

S & :
S—S linkages
i & \*
As
Initial polypeptide Folded polypeptide Active form

(inactive) (inactive) b EINSTEIN
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8: Signal transduction pathways convert
messages received at the cell surface to
responses within the cell

= Signal transduction ‘. 8
pathway is a series of ° \
molecular changes that @
converts a signal at the cell’s 9
surface to a response within 2
the cell "

. | o
— Signal molecule is released e ——
by a signaling cell / \
— Slg nal molecule binds to a '\ RIS 1*xwwww )
receptor on the surface of a
P \fza.@ __—-f
target cell 1
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8: Signal transduction pathways convert
messages received at the cell surface to
responses within the cell

™ o\o
— Related proteins are o
activated in a series of
reactions

\
9
7

— A transcription factor -
is activated and enters {-)
the nucleus ¢
7))

==

— Specific genes are
transcribed to initiate a /
cellular response

\_-/

r\ w\s&w@m\,&www

%
l — o
e S
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Review: Multiple mechanisms regulate gene
expression in eukaryotes

= Many possible control points exist; a given gene may be
subject to only a few of these

— Chromosome changes

— DNA unpacking
— Control of transcription

— Regulatory proteins and control sequences
— Control of RNA processing

— Addition of 5’ cap and 3’ poly-A tail

— Splicing

— Flow through nuclear envelope
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Review: Multiple mechanisms regulate gene
expression in eukaryotes

= Many possible control points exist; a given gene may be
subject to only a few of these

— Breakdown of mRNA
— Control of translation
— Control after translation
— Cleavage/modification/activation of proteins

— Breakdown of protein
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Gene-regulatory networks

What are gene-regulatory networks (GRNs)?
- networks between genes coding for transcription factors and

genes they regulate

e R
. activator / - - . %H“‘\

I 4__._1
|| ! A'/ repressor complex < gene 3
==

gene 2
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Gene-regulatory networks

How does one generate GRNs?
- from co-expression + regulatory information (e.g. presence of
TF binding sites)
What can these GRNs be used for?
- functional interpretation of exp. data, guide inhibitor design etc.
Limitations of current GRN models:
- incomplete in terms of TF-interactions,

- usually do not account for epigenetic effects and miRNAs
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How does one generate GRNs?

(1) "by hand” based on individual experimental
observations

(2) Infer GRNs by computational methods from
gene expression data
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Unsupervised methods

Unsupervised methods are either based on correlation or on mutual
information.

Correlation-based network inference methods assume that correlated
expression levels between two genes are indicative of a regulatory interaction.

Correlation coefficients range from -1 to 1.

A positive correlation coefficient indicates an activating interaction,
whereas a negative coefficient indicates an inhibitory interaction.

The common correlation measure by Pearson is defined as
ov(X, X))
o(X;) - o(X))

where X;and X; are the expression levels ot genes /and j,
cov(.,.) denotes the covariance, and ¢ is the standard deviation.

corr(X;, X)) =
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Rank-based unsupervised methods

Pearson’s correlation measure assumes normally distributed values.
This assumption does not necessarily hold for gene expression data.

Therefore rank-based measures are frequently used.
The measures by Spearman and Kendall are the most common.

Spearman’s method is simply Pearson’s correlation coefficient for the ranked
expression values

EG:F‘E(KLX}} - cffS(X:j}f{r."]
Taln—1)

Kendall’s t coefficient : WX, X) =

where X;and X'; are the ranked expression profiles of genes /and ;.
Con(.) denotes the number of concordant value pairs (i.e. where the ranks for both

elements agree). dis(.) is the number of disconcordant value pairs in X";and X;.
Both profiles are of length n.

L
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Unsupervised methods based on mutual information

Relevance networks (RN) introduced by Butte and Kohane measure the mutual
information (MI) between gene expression profiles to infer interactions.

The MI I between discrete variables X;and X; is defined as

(X, X = > Y plxas) lgg(i(xﬁ;(xﬁj)

A e

where p(x;, X)) is the joint probability distribution of X; and X;

p(x;) and p(x;) are the marginal probabilities of the two variables
(ignoring the value of the other one).

X;and X;are required to be discrete variables.
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Unsupervised methods: Z-score

Z-SCORE is a network inference strategy by Prill et al. that takes advantage
of knockout data.

It assumes that a knockout affects directly interacting genes more strongly
than others.

The z-score z; describes the effect of a knockout of gene /in the k-th
experiment on gene j as the normalized deviation of the expression level X, of
gene j for experiment k from the average expression (X)) of gene ;.

. K — WX)
T olX)
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supervised inference method: SVM

In contrast to unsupervised methods, e.g. correlation methods, the supervised
approach does not directly operate on pairs of expression profiles but on feature
vectors that can be constructed in various ways.

E.g. one may use the outer product of two gene expression profiles X;and X; to
construct feature vectors:

X = X;-Xf

A sample set for the training of the SVM is then composed of feature vectors Xx;
that are labeled v, = +1 for gene pairs that interact and vy, = -1 for those that do not

interact.
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Measure accuracy of GRNs

Inference methods aim to recreate the topology of a genetic regulatory network
e.g. based on expression data only.

The accuracy of a method is assessed by the extent to which the network it
infers is similar to the true regulatory network.

We quantify similarity e.g. by the area under the Receiver Operator
Characteristic curve (AUQC)

1 11
AUC = EZ(XE — X ) (Y + Y1)
k=1

where X, is the false-positive rate and Y, is the true positive rate for the k-th
output in the ranked list of predicted edge weights.

An AUC of 1.0 indicates a perfect prediction, while an AUC of 0.5 indicates a
performance no better than random predictions.
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Summary

Network inference is a very important active research field.

Inference methods allow to construct the topologies of gene-regulatory
networks solely from expression data (unsupervised methods).

Supervised methods show far better performance.

Performance on real data is lower than on synthetic data because regulation
in cells is not only due to interaction of TFs with genes, but also depends on
epigenetic effects (DNA methylation, chromatin structure/histone
modifications, and miRNAs).
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Reconstructed GRN is not static, but dynamic

The dynamics of GRN is reflected by motifs

Motifs are functional related
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Network Motif 1: Feed-Forward-Loop

feedforward loop

/_)1( ~0
i
T “-p X = general transcription factor
.7 N Y = specific transcription factor
o Z = effector operon(s)
p crp
ar‘aC
\— araBAD

X and Y together regulate Z:

"coherent", if X and Y have the same effect on Z (activation vs.
repression), otherwise "incoherent"

85% of the FFL in E coli are coherent %2 EINSTEIN
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FFL dynamics

mpll-lt - 5‘ H X | Inacoherent FFL:
—X X . X and Y activate Z
l 0 2 4 6 8 10 12 14 16 18 20
Y
AND Dynamics:
« input activates X
> X activates Y (delay)
| * (X && Y) activates Z
output L | ‘
0 2 4 6 8 10 12 14 16 18 20

time

Delay between X and Y — signal must persist longer than delay
— reject transient signal, react only to persistent signals
— fast shutdown

Helps with decisions based on fluctuating signals
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Network Motif 2: Single-Input-Module

(; Set of operons controlled by a single
| 6% transcription factor
[T ] * same sign
7.7 7 n  no additional regulation
e =N » control usually autoregulatory
M
argR
TR
E3EEE
R

Mainly found in genes that code for parts of a protein complex or metabolic
pathway

— relative stoichiometries
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SIM-Dynamics

Z3 threshold

Z2 threshold
X
Z1 threshold
0 1 2 3 4 5 6 7 8 9 10

l v l b
0.8}
Z1 Z2 2Z3 o5
0.4}
02r
0.

time
With different thresholds for each regulated operon:
— first gene that is activated is the last that is deactivated

— well defined temporal ordering (e.g. flagella synthesis) + stoichiometries
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Densely Overlapping Motifs in Gene Regulation

dense overlapping regulons (DOR)

RIRA gese
Zy 2 23 Z4..2, 6600
w o € e T

SR 8% &8 £8¢% 8 e

ggo Q
=

Dense layer between groups of

transcription factors and

operons

— much denser than network
average

Usually each operon is
regulated by a different
combination of TFs.

Main "computational” units of the regulation system
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How can we study the dynamics of GRN

One simplest model is using Boolean Network
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What is Boolean Networks

Conditional transitions
« "If Luxl is present, then Al will be produced..."

« "If there is Al and there's no LuxR:Al bound to the genome, then LuxR will
be expressed and complexes can form..."

« "If LuxR:Al is bound to the genome, then LuxI is expressed..."

Simplified mathematical description of the dependencies:

Densities of the species <=> discrete states: on/off, 1/0
Network of dependencies <=> condition tables
Progress in time <=> discrete propagation steps

L
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Boolean Networks 11

State of the system: described by vector of discrete values
Si={0,1,1,0,0,1, ...}

Si = {x1(i), xz2(i), x3(i), ...}
fixed number of species with finite number of states each

— finite number of system states

Propagation:
Sie1 = {x1(i+1), xz2(i+1), x3(i+1), ...}

x1(i+1) = f1(x1(i), x2(i), x3(i), ...) with fi given by condition tables
Propagation Trajectories:

— periodic trajectories

— periodic sequence of states = attractor
— all states leading to an attractor = basin of attraction i EINSTEIN
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A—»B

A Small Example /
State vector S ={A, B, C} — 8 possible states \\,
Conditional evolution:
Aisonif Cison A activates B Cisonif (Bis on & Ais off)

Start from {A, B, C} = {1, 0, 0}

# Si A B C
0 So 1 0 0 assume that inhibition
through A is stronger than
1 S1 0 1 0 activation via B
2 S 0 0 1 periodic orbit of length 3
3 S3=S0 [ 1 0 O b2 EINSTEIN

Albert Einstein College of Medicine
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Test the Other States

Test the other states

# A B C

1 1 1
1| 2 1 O
2 o 1 o
3| o o0 1
4| 1 o0 ©
s| o 1 o©

\

Same attractor as before:

100 — 010 — 001 — 1.00\ S
C

also reached from:

110, 111, 101,011

ol - Bel A Gl A B
ol o o| o ol o o
1| 1 1| 2 1| o 1
ol 2 o
#| A B C 1) 1 1
ol 1 o 1
1| 1 1 o #| A B C
1| 1 o 1
A—»B
- B ¢
o o )
1 o o

— Erther all off or stable oscillations
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A Knock-out Mutant

A e B 1Ai+ Cl. j‘Bf-&- A' Ci+1- Bf
\ / ol o
o o o o
1 1
C 1 1 1 1
Attractors:
# A B C # A B C # A B C(C
ol 1 o o ol 1 1 o ol 1 1 1
1l o 1 o© 1l 0o 1 1 |
21 0 o0 1 - - - B )
3] 1 © O 3] 1 1 O # A B C
ol o o o
no feedback 1l o o o

— no stabilization, network just "rotates"
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One specific example: Quorum Sensing in bacterial

bzl EINSTEIN
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Gene regulation in Quorum Sensing

bioluminescence

£
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Boolean Network of Quorum Sensing

Condition tables:

Minimum set of species:

LuxR, Al, LuxR:Al,
LuxR:Al:genome, Luxl
Here: Light signal (LuxAB) o Luxl

describe the state of a species in the

next step given the current states of
all relevant species.

Lux LuxR:Al:Geno

|

me

o o

1 1
How does Lux|
depend on
LuxR:Al:Genome?

LuxR:Al:Geno| LuxR:
me Al
(o, (o)
. 8 1
How does

LuxR:Al:Genome
depend on LuxR:Al?

7 EINSTEIN
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Condition Tables for QS 11

Léux LuxR Al Luxfi:félzaeno
1 o (o, )
1 1 (o) O
1 o 1 O
1 1 1 O
o o (] 1
. A 1 (® o A
o o 1 v A
o 1 1 1
LuxR:| Lux Al LuxR:Al:Gen
Al R ome LuxRil Lu 4 LuxR:Al :Geno
o O o o Al XR me
o| 2 o o -» © ]| x o0 X
1 o 1 o + + 2 X
1 L 2 o 1 o 1 o
o o o 1 (o o 1 1
o 1 o 1 Note: wno dissociation
(@ o 1 1 (LuxR:Al:Genome — LUxR:Al + Genome)
1 1 1 1 only degradation of Al

LuxR:Al:Genome — LuxF i_
~ EINSTEIN
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Condition Tables for QS III

Al ¥R Al Luxl

o| o o 2 Lu

o 1 o o Al e Al Luxl!
1| o 1 o . 1| x  x 1
o i - (o) (o X (o [,
1 (o) (), 1 - 4 o 1 )
L 1 (o 1 (o, 1 1 o
1 (o) p 8 1

1 1 1 1

7 EINSTEIN
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> Al "« Luxl

LuxR:Al:Genome

L
»g EINSTEIN

Albert Einstein College of Medicine

VVVVVVVVVVVVVVVVVVV



Scanning for Attractors

States of V. fischeri QS system mapped onto integers

{LuxR (LR), LuxR:Al (RA), Al, LuxR:Al:Genome (RAG), Lux! (L)}
= {1, 2, 4, 8, 16}

For each attractor:
* periodic orbit and its length (period)
* basin of attraction and its relative size (32 states in total)
— how likely will the system end in each of the attractors?

Attractor 1: orbit: 1 — period 1
states: ©O,1 —Size2, 2/32=625%

start from state O:x |r RA Al RAG LI - state

o . . . . .- 0
1 X ... .- 1 <=
2 X . : 5 5 = q attractor

<
o2 EINSTEIN
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Scanning for Attractors Il

Attractor 2:  orbit: 3,9,17, 5 — period 4
States: 2,3,5,8,9,16,23Bize7, 21.9%

start from state 8:# LR RA Al RAG LI - state

o . X . - 8
1. .. X - 16
2 T T
> X X ... - 3 attractor
4 X . X . - a
s X : A R = 4
e X X « = = 5

averaged occupancies in this periodic orbit:

LR RA Al RAG LI

4/4 = 11/4 = 0.25/4 = 0.28/4 = 0.258/4 = 0.25

L
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Attractors 111

Attractor 3:  period 4, basin of 16 states — SO %

# [R RA Al RAG LUl - stateo

X X S
X X X .- 14
X X X - 28
X . X -20

Attractor 4: period 4, basin of 4 states — 12.5 %

# LR RA Al RAG LI - stateo

X X X . .= T
X X . X . - 313
X . X X - 25
X X . X -2

Attractor 5  period 2, basin of 3 states — 4.4 %
# LR RA Al RAG LI - stateo
X . X X .-133
I . X - 318

<
o2 EINSTEIN
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Classifying the Attractors

— Interpret the system's behavior from the properties of the attractors

Attractor period basin size <LuxR>  <LuxR:AI> <AI> <LuxR:AI:Gen> <LuxI>
1 1 6.25 % (2) 1 0 0 0 0
2 4 21.9% (7) 1 0.25 0.25 0.25 0.25
3 4 50 % (16) 0 0.5 1 0.5 0.5
4 4 12.5 % (4) 1 0.5 0.5 0.5 0.5
5 2 9.4% (3) 0.5 0.5 0.5 0.5 0.5

Three regimes:

dark: Luxl =0

free LuxR, no Al

intermediate: Luxl = 0.25

free LuxR + little Al

bright: Luxl = 0.5

little free LuxR (0.24) +

much Al (0.85) i_
pgf EINSTEIN
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Summary and limitations of Boolean Netowk Model

Generally: — quality of the results depends on the quality of the model

— quality of the model depends on the quality of the assumptions

Assumptions for the Boolean network description:

* subset of the species considered  _, reduced system state space)

reduced to oscillations
- conditional yes—no causality —» no continuous processes
« discretized propagation steps — timing of concurrent paths?

"You get what you pay for"
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Petri-Nets: More Accurate

Bipartite graph of

* places } two types of nodes
« tfransitions
* directed weighted arcs

Places: have a capacity (1 ... <)
— max. number of tokens (default: «)

Arcs: have costs (1 ... )
— number of tokens that are consumed/produced (default: 1)

Transitions: can fire, when the conditions are fulfilled

— enough tokens on the in-places: = costs for in-arcs
— enough remaining capacity on the out-places: = costs for out-arcs
5%
—(®) (e
3 3
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Multiple Possibilities

When multiple transitions may fire:
- all are equal

@ — choose one randomly
« if priorities are defined

I , O — transition with highest priority fires
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Study GRN dynamics by differential equation models

Simple example 1:

Negative feedback system

% Gene encodes a protein inhibiting its own expression:
negative feedback

gene
-!!!!-IIIIIIIIIIIIIIIIII-
i )

i mRNA

. protein

% Negative feedback important for homeostasis, maintenance of

system near a desired state
£
»g EINSTEIN
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Study GRN dynamics by differential equation models

Simple example 1:

Model of negative feedback system

! —> 9ene X ; = mRNA concentration

R l X , = protein concentration
i mRNA X =K, /(X)) - Y x;
X;= KX, - Y X,

. protein

K; . K, >0, production rate constants

T Y:. V> > 0. degradation rate constants
J(x5)
9 1
f(x_?) ~ n 2 9 > () threshold
0 0 X, —> 0 + x,
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Study GRN dynamics by differential equation models

Simple example 1:
Steady state analysis

% No analytical solution of nonlinear differential equations

describing feedback system

% System has single steady stateat x =10

|
1 | X2=0 X;=0:x,=
~ v
4 ¥~ .?;:220 .117—
X, =0
0 X, —>

< Steady state is stable, that is, after perturbation system will

return to steady state (homeostasis)

L
pg EINSTEIN

Albert Einstein College of Medicine

VVVVVVVVVVVVVVVVVVV



Study GRN dynamics by differential equation models

Simple example 1:

Transient behavior after pertubation

< Numerical simulation of differential equations shows transient
behavior towards steady state after perturbation

Initial values x, (0), x, (0) correspond to perturbation

1N

- 7 EINSTEIN
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Study GRN dynamics by differential equation models

Simple example 2:

Positive feedback system

“+ Gene encodes a protein activating its own expression:
positive feedback

ene
;_g_
i l
£~

l mRNA

- . protein

“+ Positive feedback important for differentiation, evolution

towards one of two alternative states of system
o EINSTEIN
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Study GRN dynamics by differential equation models
Simple example 2:

Model of positive feedback system

g —> 9°ne X ; = mRNA concentration

R X , = protein concentration

+

mRNA X, =K,/(x,) - 7 x;

i X,=K,X; - b X,
. protein
K; . K5 > 0, production rate constants

¢ Y;. 7> > 0. degradation rate constants
f(x,) f
1
X
S xs) = :
2 9 H 14|

voonT +x; “ENSEN
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Study GRN dynamics by differential equation models

Simple example 2:

Steady state analysis

“+ No analytical solution of nonlinear differential equations
describing feedback system

% System has three steady states

T 3:_2:0
, K;
X, =0:x;= — f(x,)
Vi
P &
X, =0:x;= . X,

*+ Two stable and one unstable steady state. System will tend to

one of two stable steady states (differentiation)
o EINSTEIN
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Study GRN dynamics by differential equation models

Simple example 2:

Transient behavior after pertubation

%+ Depending on strength of perturbation, transient behavior
towards different steady states

N
N

I —
EQ
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Study GRN dynamics by differential equation models

Simple example 3:

Model of time-delay feedback system

% Time to complete transcription and translation introduces time-
delay in differential equations

Q . gene X ; = mRNA concentration
X , = protein concentration
A l 2
i mRNA
- . protein ¥

X

X, =K, /(x5 -vx,

. . T -
X, =K, X -1 X,

t)y=x,(-1;), T,> 0 time-delay
Nt)=x5(-T,), T,> 0 time-delay

-

% Time-delay feedback systems may exhibit oscillatory behavior
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Study GRN dynamics by differential equation models

Simple example 4:
More complex feedback systems

%+ Gene encodes a protein activating synthesis of another protein
inhibiting expression of gene: positive and negative feedback

ene a
gene b . . g
i N S )

mRNA b l i mRNA a

orotein B . . protein A

< Interlocking feedback loops give rise to models with complex
dynamics: numerical simulation techniques necessary
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Study GRN dynamics by differential equation models

% Differential equations have been used to model a variety of
genetic regulatory networks:

e circadian rhythms in Drosophila (Leloup and Goldbeter, 1998)

e /. phage infection of E. coli (McAdams and Shapiro, 1998)

e Segmentation of early embryo of Drosophila (Reinitz and Sharp, 1996)
e cell division in Xenopus (Novak and Tyson, 1993)

e [rp synthesis in E. coli (Santillan and Mackey, 2001)

e Induction of /ac operon in E. coli (Carrier and Keasling, 1999)

e developmental cycle of bacteriophage T7 (Endy et al., 2000)
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Study GRN dynamics by stochastic models

Gene expression is discrete process

%+ Gene expression is result of large number of discrete events:
chemical reactions

RNA polymerase

DNA [ € T 1T [ 1T 11— [t [ T[T 1
0 0 1 ;

1 2 3 4 n-1 n

DNA, * RNAP —> DNA, 1 * RNAP
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Study GRN dynamics by stochastic models

(Gene expression is stochastic process

“+ Gene expression is stochastic process: random time
intervals t between occurrence of reactions

RNA polymerase

ona | 1 1 T T [ [ | — L 1 T 1 |
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

% Time interval T has probability distribution

|

P(t)
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Study GRN dynamics by stochastic models

Differential equations are abstractions

++ Differential equation models make continuous and
deterministic abstraction of discrete and stochastic process

e x(7) € R,y is continuous variable

e X = f(x) determines change in x; at /

“+ Abstraction may not be warranted when modeling gene
regulation on molecular level: low number of molecules

“+ Therefore, more realistic stochastic models of gene regulation
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Study GRN dynamics by stochastic models

Stochastic variables

+ Stochastic variables X; describe number of molecules of
proteins, MRNAs, etc.

o X () € N_, is discrete variable

e P(X (1)) is probability distribution describing probability that at time-
point 7 cell contains X’ molecules of i

|

P(X{(1)) —

Ik

X —
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Study GRN dynamics by stochastic models

Stochastic master equations

» Stochastic master equations describe evolution of state X =
| X,,..., X,|" of regulatory system

PX (t +AN) = PX (1)) (1 - 2. o At) + 2. B; Ar
i=1 j=1
e /1 is the number of reactions that can occur in the system

e o Atis the probability that reaction ; will occur in |7, 1 +Af] given that
the system is in state X at 7

o )5; At is the probability that reaction j will bring the system in state X
from another state in [7, 7 +Af]

van Kampen, 1997
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Study GRN dynamics by stochastic models

Stochastic simulation

% For At — 0 we obtain
5_ m
5 PX ()= 2 (B oy PXX (1))
j=1
% Analytical solution of master equations is not possible

% Stochastic simulation by predicting a sequence of reactions
changing the state of the system, starting from initial state X,

Stochastic simulation uses stochastic variables T and p
T = time interval until occurrence of next reaction

P — type of reaction

Gillespie, 1977
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Study GRN dynamics by stochastic models

Reactions in gene expression

“+ Five possible reactions in gene expression are considered

RNA polymerase

T CITITT1T1.TT1T1— [ T T 1T T 1 DNA+RNAP—>DNA,- RNAP
01 2 3 4 n-1n 01 2 3 4 n-1n

2 [O [T 1. 1T 1— [ [ 1_ T 1 1 DNA-RNAP > DNA,, +RNAP
0 1 2 3 4 n-1n 01 2 3 4 n-1 n

3 LT T T 1 T¢ — [T T L 1-T 11 DNA,-RNAP s DNA +RNAP
01 2 3 4 nin 01 23 4 nin
. repressor

4 LT TI.TT1— T T T I1.T T ONA+R »>DNA-R
01 2 3 4 n-1 n 01 2 3 4 n-1n

5 | T T I T T 11— [CITTTTI1T TT 1 DNA-R >DNA+R
01 2 3 4 nin 01 23 4 nin

L
pg EINSTEIN

Albert Einstein College of Medicine

VVVVVVVVVVVVVVVVVVV



Study GRN dynamics by stochastic models

Simulation of gene expression

** Stochastic simulation from initial state

. . . . reaction 1 chosen

(T T TTI1T.TT1— [ T T 1 T T 1 DNA+RNAP— DNA,-RNAP
01 2 3 4 n-1n 01 2 3 4 n-1 n
. . reaction 2 chosen
[1 [T 1. 1T 11— [t [ 1T T 1 DNA +-RNAP — DNA,,*RNAP
01 2 3 4 n-1n 01 2 3 4 n-1n
. . . ' reaction 2 chosen
[ T¢ [ 1. T T 11— [CI 1=t :L"J:I:I DNA. - RNAP — DNA,.,  RNAP
o0 1 2 3 4 n-1 n 0 1 2 3 4 n-1
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Study GRN dynamics by stochastic models

Stochastic outcome of simulation

< Simulation starting from same initial state will generally lead to
different results

. . . reaction 4 chosen

| — (@I T 1T T oNa+R-DNA-R

I
0 1 2 3 4 n-1n 0 1 2 3 4 n-1 n

. . reaction 5 chosen
[ T T 1. T 11— [IITT1TTTIT] DNA-R-DNA+R
0 1 2 3 4 n-1n 01 2 3 4 n-1n
. . . . reaction 1 chosen
LT T T T 1. T1T17— [ T T 1T T 1 DNA+RNAP - DNA,-RNAP
01 2 3 4 n-1n 01 2 3 4 n-1n
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Study GRN dynamics by stochastic models

Stochastic simulation and master equation

“+ Repeating stochastic simulations allows approximation of
P(X (1)) in master equation to be given

!

v (N :
SN e H |
I
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Study GRN dynamics by stochastic models

Application of stochastic equations

% Stochastic equations have been used to model genetic and
other regulatory systems:

e /A phage infection of E. coli (Arkin et al., 1998)
e chemotactic signalling in E. coli (Morton-Firth and Bray, 1998)
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Study GRN dynamics by stochastic models

%+ Pro: more realistic models of gene regulation

% Contra: required information on regulatory mechanisms on
molecular level usually not available

reaction schemas and values of parameters T and p are not or
Incompletely known

% Contra: stochastic simulation is computationally expensive

large networks cannot currently be handled
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Take Home Messages

* Introduction to gene regulation
* Construction of GRN
* Unsupervised
* Supervised
* Modeling the dynamics of GRN
* Discrete Models (Boolean Network)

* Differential and Stochastic Equations,
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