
R intensive
Session 1

May 14th, 2024

Welcome!
Question: How many people have experience with coding or
analysis in some software package?

• EXCEL
• SPSS
• STATA
• SAS
• PYTHON
• MATLAB
• R

The goals of this workshop

• This is an introductory workshop!

• We want you to walk away today feeling comfortable:
1. navigating the four panels of Rstudio
2. importing data into R
3. performing some data manipulations and cleaning using dplyr
4. summarizing your data
5. plotting your data

Like any language, you need to practice a lot to get fluent!

Why R?

• Cleaning, analyzing, plotting all in one place

• Reproducibility – you can save your code and know exactly what
you did. You can also rerun code if you get new data

• It’s freely available

A few things to know first

• R has many contributed packages (>10,000) to extend R for basic and
advanced analysis

• Typically, a package will include code, documentation for the package, the
functions inside, and data sets.

• An example of a package is the gam package. This package contains
multiple functions for fitting generalized additive models. Another
example is the shiny package, which make interactive, web apps with R.

• Packages are stored in libraries

The R console
Serves as the primary interface for executing R code. The R
console serves as the primary interface for executing R code.

R Studio
• R Studio provides a user-friendly interface with various tools

and features such as debugging and fill-ins.

The 4 panels of R Studio

Source panel – write code you can save and reuse

R console – work interactively

Environment –
variables

Plots, help,
packages

R Studio tour – live demonstration (tour 1)

Some useful shortcuts

• To clear your console –> CNTL+L

• To clear your environment -> use the broom function

• To run a selected line from the source panel -> CNTL+ENTER

• To run the whole script from the source panel -> CNTL+ALT+R

• To repeat a command in the console – use the ^ arrow

Getting data into R

• In the first tour, I created vectors x and y within R, which is not the
usual workflow

• Usually, you will import an Excel spreadsheet where you have
collected and organized your data. We will show you how to do this.

• Today we will primarily work with data using a standard wide format –
unique observations in rows and variables in columns

• A long format is used when you have multiple observations for an
individual over time or space

Wide vs long data formats

Example of wide format: Example of long format:

ID x1 x2 x3 x4

1 3.3 1 2 17

2 2.1 1 3 22

3 7.0 0 1 10

4 4.1 1 1 42

ID time x1 x2 x3 x4

1 1 3.3 1 2 17

1 2 0.5 1 1 14

2 1 2.1 1 3 22

2 2 2.8 0 5 16

3 1 7.0 0 1 10

4 1 4.1 1 1 42

4 2 4.1 0 0 57

5 1 3.8 1 1 12

Data frames/tibbles

• When you import your data set into R, you typically store your data in
a data frame within R

• A dataFrame in R is a tabular (i.e., 2-dimensional, rectangular) data structure
used to store values of any data type

• A tibble is a newer version of the data frame, used in tidyverse

Installing and Loading R packages (libraries)

• Over 10,000 libraries to help you analyze data

• These libraries contain R packages, which are collections of R
functions, data and compiled code

• R libraries have to be loaded every time you open an R session

tidyverse

• Base R refers to all the functionality that comes built into the R
programming language. It is what you get when you open up the R console
for the first time.

• The tidyverse is a collection of packages that add onto R to allow you to
manipulate your data intuitively. It emphasizes readability. It does not
replace base R.

• data.table is another such collection of packages

• In this session, we focus on learning the basics of some main packages in
tidyverse (dplyr and ggplot2)

https://www.tidyverse.org/

Installing and loading the tidyverse core
install.packages('tidyverse’) #Note: you did this prior to the workshop

library('tidyverse')
library('dplyr’) #Note: dplyr automatically gets installed with tidyverse

Within tidyverse, there is package called dplyr. Think of the d as
standing for data and the plyr standing for plyers – the goal of
this package is to manipulate data frames in useful ways.

We will be focusing on the dplyr package in R this morning. This
afternoon, we will learn about another package called ggplot2

Live demonstration (tour 2)

The main verbs of dplyr

• Operation on columns
(variables)

• select
• mutate
• rename
• relocate
• Pull

• Operations on rows
(observations)

• arrange
• filter
• slice_min, slice_max

• Grouping and
summarizing
(observations)

• group_by
• summarize

• Joining two data frames
• inner_join, left_join,

right_join, full_join

I just used a simple dplyr function called bind_cols() to combine vectors x and y, but this is only one of many.
Below are the main verbs we will focus on this morning

Example data set

We will use the
starwars data set
available in the
dplyr package

This data set
consists of 87
observations and
14 variables.

Example data set

> glimpse(starwars)

87 rows x 14 columns

Column operations

dplyr::select
• Select (and optionally rename) variables in a data frame

Example:

>starwars.cut <- select(starwars,c(1:6,8:10)) #dplyr

> starwars.cut <- starwars[,c(1:6,8:10)] #base R

dplyr::select
Note: these are the same, though assignment operator (<-) preferred

>starwars.cut <- select(starwars,c(1:6,8:10))
>starwars.cut = select(starwars,c(1:6,8:10))

Note: these are NOT the same

>starwars.cut <- select(starwars,c(1:6,8:10))
>starwars_cut = select(starwars,c(1:6,8:10))

Can’t exactly remember how the function
works, key words, or options?
> ?select

Practice and learn:

Create a small data set and play around with different options

Example data set

>head(starwars.cut) #base R function to print first few rows of a data frame

A tibble 6x 9 – a tibble is a tidyverse data frame.
All dplyr verbs take a tibble as input

dplyr::mutate
• Used to replace/update the values of columns

Suppose we want to compute height in feet instead of meters
>mutate(starwars.cut, height.feet = height/30.48)

Combining verbs with pipes (%>%)
>mutate(starwars.cut, height.feet = height/30.48)

 is the same as:

>starwars.cut %>% mutate(height.feet = height/30.48)

“take the starwars.cut data set then add a new variable with height in feet”

Why use pipes? It can make code easy to follow and can avoid repetitive typing of (for
example) the data frame name in every function

Shortcut to type %>%: CNTL+SHIFT+M

Combining verbs with pipes (%>%)

If we instead want to create a new data frame with height.feet
included:

> starwars.cut1 = starwars %>% mutate(height.feet = height/30.48)

We can now look on the top right (environment) to see this new data
frame

dplyr::rename, rename_with

• Changes the name of a column

>rename(starwars.cut1,eye.color=eye_color)

>starwars.upper <- rename_with(starwars.cut1,toupper)

dplyr::relocate

• Changes column positions

> relocate(starwars.upper,MASS,.after=last_col())

dplyr::pull

Extracts a variable (column) as a vector

>pull(starwars.cut,height)
>pull(starwars.cut,2)

Row operations

dplyr::arrange

• arrange orders the rows of a data frame by the values of selected
columns

Note: We can find more information using

??dplyr::arrange (or ??arrange) to get relevant help pages

Example using arrange

> starwars.cut %>% arrange(desc(height))
> arrange(starwars.cut, desc(height))

The 87x10 tibble starwars.cut is to be sorted by height

Example using arrange

• We can also sort by more than one variable

 >starwars.cut %>% arrange(gender, desc(height))

which sorts by gender and then ascending height

> starwars.cut %>% group_by(gender) %>%
arrange(desc(height),.by_group=TRUE)

accomplishes the same thing

dplyr::filter

• used to subset a data frame, retaining all rows that satisfy your
conditions

• Useful functions:
• == > <
• & | ! xor()
• is.na()
• between()
• near()

Examples using filter

> starwars.cut %>% filter(homeworld=="Naboo")

Examples using filter
> starwars.cut %>%
 filter(homeworld=="Naboo") %>%
 filter(hair_color != 'grey')

More succinctly, we can type:
>filter(starwars.cut,homeworld =="Naboo" & hair_color != 'grey’)

Note we can use a double ("Naboo") or single
('grey') quote interchangeably in R

Examples using filter

> starwars.cut %>% filter(height > 200) %>% filter(mass != ‘NA’)

slice_min, slice_max

Grouping operations

dplyr::group_by

• Groups the data frame by a grouping variable(s). Becomes a
grouped tibble where operations are performed by group until it is
ungrouped

• NOT the same as sorting or dplyr::arrange

> group_by(starwars.cut1, gender)
>ungroup(starwars.cut1)

group_by

dplyr::summarize
• Creates a new data frame.
• It returns one row for each combination of grouping variables

Example with no grouping variable:
>starwars.cut %>%
 mutate(height.feet=height/30.48) %>%
 summarize(mean=mean(height.feet,na.rm=TRUE),

median=median(height.feet,na.rm=TRUE))

dplyr::summarize

Objective Function

Basic mean()

median()

sum()

variation sd()

IQR()

range min(), max()

quantile()

Some basic statistics you may compute:

summarize

> starwars.cut %>%
 mutate(height.feet=height/30.48) %>%
 group_by(gender) %>%
 summarize(mean=mean(height.feet,na.rm=TRUE),
 count=n())

Compute the average height in feet by gender

mutate

Compute the deviation of each individual height (in feet) from the average for
their gender

> starwars.cut %>%
 mutate(height.feet=height/30.48) %>%
 group_by(gender) %>%
 mutate(height.grp.mean=mean(height.feet,na.rm=TRUE)) %>%
 mutate(height.dev=height-height.grp.mean) %>%
 select(name,gender,height.feet, height.dev, height.grp.mean,)

mutate

mutate

Also compute the deviation from the overall mean:

> starwars.cut %>%
 mutate(height.feet=height/30.48) %>%
 group_by(gender) %>%
 mutate(height.dev=height.feet - mean(height.feet,na.rm=TRUE))%>%
 mutate(height.grp.mean=mean(height.feet,na.rm=TRUE)) %>%
 ungroup(gender) %>%
 mutate(height.overall.dev=height.feet - mean(height.feet,na.rm=TRUE)) %>%
 select(name,gender,height.feet,height.dev,height.grp.mean,height.overall.dev)

mutate

Example

Output the count for each gender and eye color.

Example

Output the count for each gender and eye color.

> starwars.cut %>%
 group_by(gender, eye_color) %>%
 summarize(count=n())

Example
Select all gender=“feminine” individuals with height in feet greater
than the overall group average height and then summarize the
count in each homeworld for this subgroup

Example
Select all gender=“feminine” individuals with height in feet greater
than the overall group average height and present a table
summarizing the count of each homeworld in this subset

>starwars.cut %>%
 filter(gender== 'feminine') %>%
 mutate(height.feet=height/30.48) %>%
 mutate(height.mean=mean(height.feet,na.rm=TRUE)) %>%
 filter(height.feet > height.mean,na.rm=TRUE))

Merging data frames

dplyr::inner_join
Only keeps observations from data frame A if they have a match in
in data frame B. Unmatched observations from A or B are not kept
Example:

A = B=
Name Age

Joe 19

John 33

Jack 41

Name Wage/hr

Joe 15

John 21

Jack 24

Ed 35

dplyr::left_join and dplyr::right_join

A =

B=

Name Age

Joe 19

John 33

Jack 41

Name Wage/hr

Joe 15

John 21

Jack 24

Ed 35

Helpful online communities

R Studio
• https://forum.posit.co/

R
• https://stackoverflow.com/questions/tagged/R

Tidyverse:
• https://posit.co/resources/videos/a-gentle-introduction-to-tidy-statistics-in-r/
• https://dplyr.tidyverse.org/reference/mutate-joins.html

https://forum.posit.co/
https://stackoverflow.com/questions/tagged/R
https://posit.co/resources/videos/a-gentle-introduction-to-tidy-statistics-in-r/

BERD House

https://www.einsteinmed.edu/centers/ictr/biostatistics-
epidemiology-research-design-core/berd-house/

https://www.einsteinmed.edu/centers/ictr/biostatistics-epidemiology-research-design-core/berd-house/
https://www.einsteinmed.edu/centers/ictr/biostatistics-epidemiology-research-design-core/berd-house/

	R intensive
	��Welcome!
	The goals of this workshop
	Why R?
	A few things to know first
	The R console
	R Studio
	The 4 panels of R Studio
	��R Studio tour – live demonstration (tour 1)
	Slide Number 10
	Some useful shortcuts
	Getting data into R
	Wide vs long data formats
	Data frames/tibbles
	Installing and Loading R packages (libraries)
	tidyverse
	Installing and loading the tidyverse core
	Live demonstration (tour 2)
	Slide Number 19
	The main verbs of dplyr
	Slide Number 21
	Example data set
	Example data set
	Column operations
	dplyr::select
	dplyr::select
	Can’t exactly remember how the function works, key words, or options?
	Practice and learn:
	Example data set
	dplyr::mutate
	Combining verbs with pipes (%>%)
	Combining verbs with pipes (%>%)
	dplyr::rename, rename_with
	dplyr::relocate
	dplyr::pull
	Row operations
	dplyr::arrange
	Example using arrange
	Example using arrange
	dplyr::filter
	Examples using filter
	Examples using filter
	Examples using filter
	slice_min, slice_max
	Grouping operations
	dplyr::group_by
	group_by
	dplyr::summarize
	dplyr::summarize
	summarize
	mutate
	mutate
	mutate
	mutate
	Example
	Example
	Example
	Example
	Merging data frames
	dplyr::inner_join
	dplyr::left_join and dplyr::right_join
	�Helpful online communities�
	BERD House

