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DARPP-32: Regulator of the
Efficacy of Dopaminergic

Neurotransmission
A. A. Fienberg,* N. Hiroi,† P. G. Mermelstein, W.-J. Song,

G. L. Snyder, A. Nishi, A. Cheramy, J. P. O’Callaghan, D. B. Miller,
D. G. Cole,‡ R. Corbett, C. N. Haile, D. C. Cooper, S. P. Onn,

A. A. Grace, C. C. Ouimet, F. J. White, S. E. Hyman,§
D. J. Surmeier,\ J.-A. Girault, E. J. Nestler, P. Greengard

Dopaminergic neurons exert a major modulatory effect on the forebrain. Do-
pamine and adenosine 39,59-monophosphate–regulated phosphoprotein (32
kilodaltons) (DARPP-32), which is enriched in all neurons that receive a dopa-
minergic input, is converted in response to dopamine into a potent protein
phosphatase inhibitor. Mice generated to contain a targeted disruption of the
DARPP-32 gene showed profound deficits in their molecular, electrophysio-
logical, and behavioral responses to dopamine, drugs of abuse, and antipsy-
chotic medication. The results show that DARPP-32 plays a central role in
regulating the efficacy of dopaminergic neurotransmission.

Midbrain dopaminergic neurons play a criti-
cal role in multiple brain functions (1–3).
Abnormal signaling through dopaminergic
pathways has been implicated in several ma-
jor neurological and psychiatric disorders, in-
cluding Parkinsonism, schizophrenia, and
drug abuse (4). The physiological and clinical
importance of dopamine pathways in the
brain makes it imperative to elucidate the
mechanisms by which dopamine, acting on
its receptors, produces its biological effects
on target neurons.

One well-studied molecular target for the
actions of dopamine is DARPP-32 (5), which
is highly enriched in virtually all medium
spiny neurons in the striatum (6). Dopamine,
acting on D1-like receptors, causes activation
of protein kinase A (PKA) and phosphoryl-
ation of DARPP-32 on threonine-34 (7 ).
Conversely, dopamine, acting on D2-like re-
ceptors, through both inhibition of PKA and
activation of calcium/calmodulin–dependent
protein phosphatase (protein phosphatase 2B/
calcineurin), causes the dephosphorylation of
DARPP-32 (8). Several other neurotransmit-
ters that interact with the dopamine system
also stimulate either phosphorylation or de-
phosphorylation of DARPP-32 through vari-

ous direct and indirect mechanisms (9).
DARPP-32, in its phosphorylated but not its
dephosphorylated form, acts as a potent in-
hibitor of protein phosphatase-1 (PP-1) (10).
PP-1 controls the state of phosphorylation
and the physiological activity of a wide array
of neuronal phosphoproteins, including neu-
rotransmitter receptors, ion channels, ion
pumps, and transcription factors (11).

That numerous pathways regulate, or are
regulated by, the DARPP-32/PP-1 signaling
cascade suggests the central importance of
DARPP-32 in mediating the biological ef-
fects of dopamine. To evaluate this hypothe-
sis, given the absence of any specific phar-
macological antagonists for DARPP-32, we
generated mice that lack this protein (12).
The absence of DARPP-32 protein from mice
homozygous for the mutated DARPP-32
gene was demonstrated by immunoblotting
striatal extracts. Immunocytochemistry con-
firmed that the DARPP-32 protein was absent
from mutant mouse brain (13), although the
brains of the DARPP-32 mutant mice ap-
peared normal structurally (14, 15).

Phosphorylated DARPP-32 inhibits de-
phosphorylation of numerous other proteins
by PP-1. Therefore, we examined the possi-
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bility that the DARPP-32 mutant mice might
show an aberrant state of phosphorylation of
PP-1 substrates in response to stimulation by
dopamine. One protein phosphorylated in
striatum and nucleus accumbens in response
to dopamine is the NR1 subunit of the N-
methyl-D-aspartate (NMDA)–type glutamate
receptor (16 ). We tested the effect of muta-
tion of the DARPP-32 gene on dopamine-
stimulated phosphorylation of this receptor
(Fig. 1A). The total amount of NR1 in slices
of nucleus accumbens was unaffected by the
loss of DARPP-32. Dopamine increased NR1
phosphorylation by three- to fourfold in wild-
type mice, but this increase was abolished in
DARPP-32 mutant mice (17 ). The demon-
stration that DARPP-32 is involved in do-
pamine-regulated phosphorylation of the
NR1 receptor is consistent with recent elec-
trophysiological studies. Thus, in rat and
mouse striatal neurons, dopamine, D1 ago-
nists, and forskolin enhanced responses me-
diated by activation of NMDA receptors (18,
19). In Xenopus oocytes, DARPP-32 was
found to be a critical component of adenosine
39,59-monophosphate–dependent regulation
of NMDA current (20).

Activation of the dopamine D1 receptor–
PKA–DARPP-32 cascade alters the electro-
physiological properties of dopaminoceptive
neurons in several ways. One target of D1
receptors in striatal neurons is the electrogen-

ic ion pump Na1- and K1-dependent adeno-
sine triphosphatase (Na1,K1-ATPase) (21),
which regulates membrane potential and
electrical excitability. The principal role of
this transmembrane protein in neurons is to

maintain the Na1 and K1 concentration gra-
dients and the membrane potential that un-
derlie electrical excitability. The activity of
Na1,K1-ATPase in dissociated mouse stria-
tal neurons was reduced by the D1 receptor
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Fig. 1. Reduced ability of dopaminergic agonists to regulate electrophysiological properties of
dopaminoceptive neurons from DARPP-32 mutant mice. (A) Effect of dopamine (100 mM) on
phosphorylation of NR1 subunit of glutamate NMDA receptor in nucleus accumbens slices. Data
are expressed as percent radioactivity for the zero time controls (mean 6 SEM, n 5 5, *P , 0.05,
Student’s t test). (B) Na1,K1-ATPase activity. Acutely dissociated striatal neurons prepared from
wild-type or mutant mice were incubated in the absence or presence of the D1 receptor agonist
SKF 82526 (1 mM) for 10 min (n 5 5). Na1,K1-ATPase activity was assayed as described (21). Basal
Na1,K1-ATPase activity was similar in wild-type (442 6 27 nmol of inorganic phosphate per
milligram of protein per minute) and mutant (394 6 56 nmol of inorganic phosphate per milligram
of protein per minute) mice. *P , 0.01; paired t test, compared with control. (C) (a and c) Plot of
peak calcium current versus time in striatal neurons. Application of the D1 receptor agonist SKF
81297 (5 mM) resulted in greater inhibition of the whole-cell current in wild-type neurons (21.4%
6 2.4%, mean 6 SEM, n 5 10) than in mutant neurons (15% 6 1.1%, n 5 12, P , 0.05,
Mann-Whitney U test). (Inset) Box-plot summary of the D1 receptor–mediated inhibition of
calcium currents in wild-type and mutant neurons. (b and d) Representative current traces from the
records used to construct (a) and (c), respectively. (D) Inhibitory efficacy of the D1 receptor agonist
SKF 81297 (0.01 M, pipette concentration) on firing rate of nucleus accumbens neurons tested in
vivo. Glutamate (0.01 M, pipette concentration) was used to drive the activity of nucleus
accumbens neurons. For SKF 81297 delivered at lower ionotophoretic currents, glutamate-driven
activity was significantly less in neurons recorded from wild-type (n 5 7), but not in those from
mutant (n 5 14) mice. Each data point represents mean 6 SEM. *P , 0.05, **P , 0.01, analysis
of variance (ANOVA) followed by Dunnett’s test.
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agonist SKF 82526 (Fig. 1B). This inhibition
was abolished by the D1 receptor antagonist
SCH 23390 (22). In neurons from DARPP-32
mutant mice, the ability of the D1 agonist to
inhibit Na1,K1-ATPase was eliminated (Fig.
1B).

D1 receptor stimulation also reduces the
responsiveness of medium spiny neurons in
the striatum to excitatory input at hyperpolar-
ized membrane potentials through mecha-
nisms that are independent of Na1,K1-
ATPase activity (23, 24). Two such mecha-
nisms involve PKA-mediated changes in the
properties of voltage-dependent ion chan-
nels—notably, Na1 and Ca21 channels (18,
25). For example, N- and P/Q-type Ca21

currents are reduced by D1 receptor–medi-
ated activation of PKA in medium spiny neu-
rons of rats (26). Whole-cell voltage clamp
recordings of Ca21 currents revealed that D1
receptor stimulation produces a similar, po-
tent modulation in acutely isolated striatal
neurons from wild-type mice (Fig. 1C). Al-
though basal current densities were un-
changed, the modulation of Ca21 currents by
D1 receptor agonists was reduced by about

50% in striatal neurons from DARPP-32 mu-
tant mice (Fig. 1C).

Intracellular recordings from medium
spiny neurons in slices also provided evi-
dence for an attenuation of D1 receptor–
mediated changes in cellular excitability in
DARPP-32 mutant mice. In current-clamp
recordings from medium spiny neurons of
rats at hyperpolarized membrane potentials,
D1 receptor stimulation increased rheobase
current (current injection threshold to elicit a
single spike) through PKA-mediated reduc-
tion in Na1 currents (24, 25). In wild-type
mice D1 receptor agonists also produced an
increase in the current injection threshold of
medium spiny neurons. This effect was sig-
nificantly decreased in neurons from the
DARPP-32 mutant mice (27).

D1 receptor stimulation also reduces the
responsiveness of medium spiny neurons to
exogenous glutamate in vivo (18, 28). In the
present experiments, extracellular electrodes
were used to record from type 1 medium
spiny neurons in the nucleus accumbens.
Glutamate and a dopaminergic ligand were
applied near the recorded cell by iontophore-

sis. In wild-type mice, iontophoretic applica-
tion of a D1 agonist produced a dose-dependent
decrease in glutamate-evoked activity (Fig.
1D). In mutant mice, this D1 receptor–mediated
inhibition was significantly attenuated. Thus, all
the electrophysiological results show that D1
receptor–triggered, PKA-dependent suppres-
sion of medium spiny neuron excitability at
hyperpolarized membrane potentials was sig-
nificantly attenuated in DARPP-32 mutant
mice.

The psychostimulant D-amphetamine in-
duces a massive outflow of dopamine from
nigrostriatal nerve terminals, which in turn
increases the release of g-aminobutyric acid
(GABA) from nerve terminals of medium
spiny neurons of rat in vivo and in vitro (29).
This paradigm was used to assess the ability
of endogenous dopamine to stimulate the ef-
flux of [3H]GABA in striatal slices from
wild-type and DARPP-32 mutant mice. A
large efflux of [3H]GABA was evoked by
D-amphetamine in wild-type mice, but this
effect was significantly attenuated in the
DARPP-32 mutant mice (Fig. 2A). This ef-
fect of the DARPP-32 deletion was attribut-
able to both a decrease in amphetamine-in-
duced dopamine release, as shown in striatal
slices (Fig. 2B) and synaptosomes (Fig. 2C),
and a decrease in dopamine-induced GABA
release (Fig. 2D). Further evidence for an
alteration in the properties of dopaminergic
neurons in DARPP-32 mutant mice was ob-
tained in studies of methamphetamine neuro-
toxicity (30). The administration of a neuro-
toxic regimen of methamphetamine to wild-
type mice caused severe damage to dopami-
nergic nerve terminals, as shown by a
reduction in dopamine (Fig. 2E) and an in-
crease in glial fibrillary acidic protein
(GFAP), an index of injury-induced gliosis
(Fig. 2F). These effects were abolished in the
mutant mice (Fig. 2, E and F). The observa-
tions that deletion of the DARPP-32 gene
reduced amphetamine-induced dopamine re-

Fig. 2. (A to D) Reduced ability
of amphetamine (4 3 1027 M)
and dopamine (1025 M) to in-
duce neurotransmitter release in
DARPP-32 mutant mice.
[3H]GABA release (A and D) and
[3H]dopamine release (B and C)
were measured in striatal micro-
discs (A, B, and D) or synapto-
somes (C) from wild-type (■, Œ)
and mutant (E) mice treated
with drug (■, E) or vehicle (Œ).
Drugs were applied for 5 min as
indicated by solid bars (37). In no
case was there a significant dif-
ference between wild-type and
mutant mice, either in accumu-
lation of radiolabeled neuro-
transmitter or in basal amounts
of neurotransmitter outflow (ve-
hicle data are shown only for
wild-type mice). Data were ob-
tained from 8 to 16 independent
samples for each treatment.
ANOVA was followed by New-
man-Keuls test, *P , 0.01. (E
and F): Loss of ability of a neu-
rotoxic regimen of methamphet-
amine to damage dopaminergic
nerve terminals in DARPP-32
mutant mice. Damage was as-
sessed by loss of dopamine (E)
and induction of GFAP (F). Ho-
mogenates of striatum were pre-
pared from wild-type and mu-
tant mice killed 72 hours after
the last of four subcutaneous
doses of methamphetamine (10
mg/kg in isotonic saline, open
bars) or vehicle (solid bars) ad-
ministered at 2-hour intervals.
Each value represents the
mean 6 SEM for five mice. *Sig-
nificantly different from wild type, P , 0.05 (ANOVA followed by Duncan’s test).

Table 1. Reduced ability of raclopride to induce
catalepsy in DARPP-32 mutant mice. Catalepsy
testing (39) was conducted 30 min after intraperi-
toneal injection of vehicle or raclopride (n 5 12
per dose group). Wild-type and mutant control
mice injected with vehicle remained stationary for
an average of 17 s. Data represent percentage
increase in catalepsy (mean 6 SEM) relative to
vehicle-injected control animals. Data were ana-
lyzed by ANOVA, followed by Student’s t test.

Raclopride
(mg/kg)

Increase in catalepsy (%)

Wild type Mutant

0.25 236.5 6 48.7 35.0 6 31.5**
0.5 369.5 6 62.2 65.7 6 33.5**
1.0 579.2 6 65.2 387.9 6 43.3*
2.0 865.6 6 49.2 806.1 6 48.7

*P , 0.05 compared with wild-type control; **P , 0.01
compared with wild-type control.
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lease from, and methamphetamine-induced
toxicity to, dopaminergic neurons demon-
strate that the effect of this deletion on the
biological properties of the medium spiny
neurons is strong enough to alter the charac-
teristics of other neurons in this brain region,
which do not contain DARPP-32.

A well-characterized molecular conse-
quence of dopaminergic signaling in the stri-
atum is the regulation of gene expression.
Agents that increase dopaminergic neuro-
transmission—for example, amphetamine
and cocaine—have been shown to induce
several Fos-like proteins in medium spiny
neurons in the striatum, an effect that is me-
diated largely by activation of D1-like recep-
tors (31). Acute exposure to amphetamine
elicited a robust induction of Fos-like immu-
noreactivity throughout the striatum of wild-
type mice. Significant reductions in this re-
sponse were observed in most regions of the
striatum in DARPP-32 mutant mice (Fig.
3A). This deficit in c-Fos induction in the
mutant mice was partially overcome by ad-
ministration of a higher dose of amphet-
amine (32). Chronic exposure to drugs of
abuse leads to the accumulation of distinct
Fos-like proteins, isoforms of DFosB (33),
an effect that also is largely mediated by
D1-like receptors (34). Induction of the 35-
to 37-kD DFosB isoforms, observed in stri-
atum of wild-type mice in response to chronic
administration of cocaine, was virtually abol-
ished in the DARPP-32 mutant mice (Fig. 3B).
These results indicate that DARPP-32 plays an
important role in the short- and long-term
changes in gene expression elicited by acute
and chronic drug exposure, respectively.

Acute exposure to cocaine stimulates lo-
comotor activity in rodents, an effect largely
mediated by increased dopaminergic trans-
mission in the striatum, particularly the nu-
cleus accumbens [see (1)]. This effect of
cocaine, which is mediated in part via the
dopamine D1 receptors (35), was significant-
ly attenuated in DARPP-32 mutant mice at
lower, but not higher doses of the drug (Fig.
3C). Acute locomotor responses to D-amphet-
amine were also reduced in the mutant mice
(36). No difference, however, was observed
between wild-type and mutant mice in base-
line measures of locomotor activity (Fig. 3C)
or in the spontaneous locomotor activity mea-
sured by 24-hour monitoring in the animals’
home cages (36).

Raclopride and other antipsychotic drugs
induce catalepsy in rodents by a mechanism
involving blockade of striatal D2-like dopa-
mine receptors. Because raclopride increases
the basal phosphorylation of DARPP-32 and
prevents the D2 receptor–mediated decrease
in DARPP-32 phosphorylation in mouse stri-
atal slices (8), we tested the possibility that
this behavioral effect of raclopride might be
altered in the DARPP-32 mutant mice.
Raclopride produced catalepsy in both wild-
type and mutant mice; however, its effective-
ness at lower concentrations (0.25 and 0.5
mg/kg) was greatly reduced in the mutant
mice (Table 1).

This study has revealed that inactivation
of the DARPP-32 gene markedly reduced,

and in some cases abolished, various respons-
es to dopaminergic agonists and antagonists.
In some instances, the impairment of re-
sponses could be overcome by increasing the
concentration of the test substance used.
These observations can be readily explained
by the fact that stimulation of dopamine re-
ceptors regulates phosphorylation of key sub-
strates by two synergistic pathways: one in-
volves direct phosphorylation of these sub-
strates by PKA, and the other involves inhi-
bition of their dephosphorylation by PP-1, the
activity of which is regulated by DARPP-32.
Both pathways are required when the levels
of stimulation of dopamine receptors are low
(most physiological situations). In contrast, at
supraphysiological levels of stimulation, the
robust activation of the direct PKA pathway
alone appears sufficient to restore responses
in the mutant mice, which is why some of the
deficits observed in these mice could be over-
come by increasing the strength of the stim-
uli. From these data we conclude that a cas-
cade involving dopamine-mediated receptor
activation of DARPP-32, inhibition of PP-1,
and potentiation of phosphorylation of neu-
ronal substrates plays a major role in regulat-
ing the efficacy of dopaminergic neurotrans-
mission under physiological conditions.

Numerous neurotransmitters besides do-
pamine have been shown to produce physio-
logical responses and to regulate phosphoryl-
ation or dephosphorylation of DARPP-32 in
medium spiny neurons (9). The results of this
study indicate that such regulation of
DARPP-32 is probably a major molecular
mechanism by which information received
through dopaminergic and other signaling
pathways is integrated in these neurons, which
constitute the principal efferent pathway from
the striatum. Furthermore, the decreased sensi-
tivity of mutant mice to drugs of abuse and
antipsychotic agents indicates the involvement
of DARPP-32 in mediating the pharmacologi-
cal effects of both of these classes of com-
pounds. Drugs that mimic or block the inhibi-
tory effects of DARPP-32 on PP-1 might pro-
vide useful agents for the treatment of Parkin-
son’s disease, schizophrenia, drug addiction,
and other neuropsychiatric disorders involving
abnormal dopaminergic function.
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