Ana Maria Cuervo
<p>Dr. Cuervo is co-director of the Einstein Institute for Aging Research, and a member of the Einstein Liver Research Center and Cancer Center. In October 2001 she started her laboratory at Einstein, where she studies the role of protein-degradation in aging and age-related disorders, with emphasis in neurodegeneration and metabolic disorders.</p>
<p>Dr. Cuervo’s group is interested in understanding how altered proteins can be eliminated from the cells and their components recycled. Her group has linked alterations in lysosomal protein degradation (autophagy) with different neurodegenerative diseases including Parkinson’s, Alzheimer’s and Huntington’s disease. They have also proven that restoration of normal lysosomal function prevents accumulation of damaged proteins with age, demonstrating this way that removal of these toxic products is possible. Her lab has also pionered studies demonstrating a tight link between autophagy and cellular metabolism. They described how autophagy coordinates glucose and lipid metabolism and how failure of different autophagic pathways with age contribute to important metabolic disorders such as diabetes or obesity.</p>
<p>Dr. Cuervo is considered a leader in the field of protein degradation in relation to biology of aging and has been invited to present her work in numerous national and international institutions, including name lectures as the Robert R. Konh Memorial Lecture, the NIH Director’s, the Roy Walford, the Feodor Lynen, the Margaret Pittman, the IUBMB Award, the David H. Murdoxk, the Gerry Aurbach, the SEBBM L’Oreal-UNESCO for Women in Science, the C. Ronald Kahn Distinguished Lecture and the Harvey Society Lecture. She has organized and chaired international conferences on protein degradation and on aging, belongs to the editorial board of scientific journals in this topic, and is currently co-editor-in-chief of Aging Cell.</p>
<p>Dr. Cuervo has served in NIH advisory panels, special emphasis panels, and study sections, the NIA Scientific Council and the NIH Council of Councils and has been recently elected member of the NIA Board of Scientific Counselors and member of the of the Advisory Committee to the NIH Deputy Director.. She has received numerous awards for the pioneerign work of her team such as the 2005 P. Benson Award in Cell Biology, the 2005/8 Keith Porter Fellow in Cell Biology, the 2006 Nathan Shock Memorial Lecture Award, the 2008 Vincent Cristofalo Rising Start in Aging Award, the 2010 Bennett J. Cohen Award in Aging Biology, the 2012 Marshall S. Horwitz, MD Faculty Prize for Research Excellence and the 2015 Saul Korey Prize in Translational Medicine Science. She has also received twice the LaDonne Schulman Teaching Award. In 2015 she was elected International Academic of the Royal Academy of Medicine of the Valencia Community and in 2017, she was elected member of the Real Academia de Ciencias Exactas, Fisicas y Naturales. She was elected member of the American Academy of Arts and Sciences in 2018 and member of the National Academy of Science in 2019.</p>
<p class="MsoNormal" style="line-height: 15.6pt;">Dr. Cuervo is considered a leader in the field of autophagy— the process by which cells remove and recycle their waste. The Barcelona, Spain native is also an expert on the cellular biology of aging. Dr. Cuervo has been quoted in numerous publications, including <em>The New York Times</em>, <em>Nature, Science</em>, <em>Scientific American</em>, and <em>The Scientist</em>. </p>
<p class="MsoNormal" style="line-height: 15.6pt;">Dr. Cuervo is co-editor-in-chief of <em>Aging Cell</em> and has served on various National Institutes of Health (NIH) advisory panels and study sections, the National Institute on Aging’s Council, and the NIH Council of Councils. She is currently a member of the Advisory Committee to the NIH deputy director, and chair of the NIA Board of Scientific Counselors. She is an elected member of the National Academy of Sciences and of the American Academy of Arts and Sciences. </p>
<p class="MsoNormal" style="line-height: 15.6pt;">Dr. Cuervo’s work focuses on the causes of age-related diseases including degenerative disorders such as Alzheimer’s disease and Parkinson’s disease, metabolic conditions such as diabetes, and cardiovascular disorders. Her goal is to develop therapies that will restore normal cellular housekeeping and thus prevent the accumulation of toxic protein byproducts and the death of affected cells in age-related disorders. Dr. Cuervo was named to the Highly Cited Researchers List (ranking of top 1% cited researchers) since 2018.</p>
<p>(selected from >200 per review publications)</p>
<ol>
<li>Cuervo, A.M.*; Stephanis, L.; Freundberg, R.; Lansbury, P.; Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Science</span></em>305, 1292-1295, 2004</li>
<li>Kaushik, S.; Massey, A.C.; Kiffin, R., Cuervo, A.M*. Role of lysosomal lipid microdomains in the regulation of chaperone-mediated autophagy. <em><span style="text-decoration: underline;">EMBO J.</span> </em>25, 3921-33, 2006</li>
<li>Zhang, C., Cuervo, AM*. Restoration of chaperone-mediated autophagy in aging improves cellular maintenance and organ function. <em><span style="text-decoration: underline;">Nat. Med.</span> </em>14: 959-65, 2008</li>
<li>Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I; Komatsu, M.; Tanaka, K.; Cuervo, A.M*.; Czaja, M.J*. Autophagy regulates lipid metabolism. <em><span style="text-decoration: underline;">Nature</span></em> 458:1131-5, 2009</li>
<li>Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, de Vries R, Kaushik S, Arias E, Harris S, Sulzer D, Cuervo AM* Cargo recognition failure is responsible for inefficient autophagy in Huntington’s Disease. <em><span style="text-decoration: underline;">Nat. Neurosci.</span> </em>13:567-76, 2010</li>
<li>Bandyopadhyay U, Shridar S, Kaushik S, Kiffin R, Cuervo AM*, Identification of regulators of chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Mol Cell</span> </em>39: 535-47, 2010.</li>
<li>Koga H., Kaushik S., Macian F. Verkushka, V. Cuervo AM* A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Nat Comm</span></em> 2: 386, 2011</li>
<li>Kon, M, Koga, Hl, Kiffin, R., Chapochnick, J. Macian, F, Vartikovski L., Cuervo AM*. Chaperone-mediated autophagy is required for turmor growth. <em><span style="text-decoration: underline;">Science TM</span> </em>3:109ra117, 2011</li>
<li>Wong E, Bejarano E, Hanson HH, Zaarur N, Phillips GR, Sherman MY, Cuervo AM*. Molecular determinants of selective clearance of protein inclusions by autophagy. <em><span style="text-decoration: underline;">Nat Comm</span> </em>3:1240, 2012</li>
<li>Orenstein SJ, Kuo SH, Tasset-Cuevas I, Arias E, Koga H, Fernandez-Carasa I, Cortes, E., Honig, L.S., Dauer, W., Consiglio A, Raya A, Sulzer, D, Cuervo AM. Interplay of LRRK2 with chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Nat. Neurosci.</span> </em>16:394-406, 2013</li>
<li>Anguiano J, Gaerner T, Daas B, Gavathiotis E, Cuervo AM. Chemical modulation of Chaperone-mediated autophagy by novel retinoic acid derivatives. <em><span style="text-decoration: underline;">Nat. Chem. Biol.</span> 9:374-82</em>, 2013</li>
<li>Pampliega O, Orhon I, Patel B, Sridhar S, Diaz-Carretero A, Beau I, Codogno P, Satir B, Satir P, Cuervo AM Functional interaction between autophagy and ciliogenesis. <em><span style="text-decoration: underline;">Nature</span> 502:194-200, 2013 </em></li>
<li>Bejarano, E, Yuste, A, Patel B, Stout, RJ, Spary, D Cuervo AM. <em>Connexins modulate autophagosome biogenesis. <em><span style="text-decoration: underline;">Nat. Cell. Biol.</span></em> 16:401-14, 2014</em></li>
<li>Schneider JL, Suh Y, Cuervo AM*. Deficient chaperone-mediated autophagy in liver leads to metabolic disregulation. <em><span style="text-decoration: underline;">Cell Metab</span>.</em> 20:417-432, 2014</li>
<li>Schneider S, Villarroya J, Diaz A, Patel B, Urbanska AM, Thi MM, Villarroya F, Santambrogio L, Cuervo AM*. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. <em><span style="text-decoration: underline;">Aging Cell,</span></em> 14:249-64, 2015</li>
<li>Rui Y-N, Xu Z, Patel B, Chen Z, Chen D, Tito A, David G, Sun Y, Stimming ER, Bellen H, Cuervo AM*, Zhang S*. Huntingtin functions as a scaffold for selective macroautophagy. <em><span style="text-decoration: underline;">Nat. Cell. Biol.</span></em> 17: 262-75, 2015</li>
<li>Park C, Shu Y, Cuervo AM*.Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. <em><span style="text-decoration: underline;">Nat. Commun.</span> </em>6:6823 doi: 10.1038/ncomms7823, 2015</li>
<li>Kaushik, S. Cuervo AM*. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. <em><span style="text-decoration: underline;">Nat. Cell. Biol. </span></em>17: 759-70, 2015</li>
<li>Arias E., Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM*. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Mol. Cell</span> </em>59, 270-84, 2015</li>
<li>Kaushik, S. Cuervo AM*. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. <span style="text-decoration: underline;"><em>Autophagy.</em> </span>12(2):432-438, 2016</li>
<li>Maus M, Cuk M, Patel B, Lian J, Qimet M, Kaufmann U, Yang J, Horvath R, Hornig-Do H-T, Chrzanowska-Lightowlers ZM, Moore KJ, Cuervo AM, Feske S. Store-Operated Ca2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism.<span style="text-decoration: underline;"><em>Cell Metab</em></span> 25: 698-712, 2017</li>
<li>Beckerman P, Karchin JB, Park ASD , Dummer P, Soomro I, Boustany-Kari C, Pullen S Qiu C, Miner JH, Hu C-A, Rohacs T, Inoue K, Shuta I, Saleem M, Palmer M, Cuervo AM, Kopp J, Susztak K. Transgenic Expression of Human APOL1 Risk Variants in Podocytes Induces Kidney Disease in Mice. <span style="text-decoration: underline;"><em>Nat Med</em></span> 23: 429-438, 2017</li>
<li> Gomes LR, Menck, CFM, Cuervo AM*, Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. <em><span style="text-decoration: underline;">Autophagy</span></em> 13: 928-940, 2017</li>
<li>Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Mandelkow E-, Mandelkow E, Cuervo AM*. Interplay of pathogenic forms of human tau with different autophagic pathways. <em><span style="text-decoration: underline;">Aging Cell</span> </em>17(1): doi: 10.2222/acel.12692, 2017 PMID: 29024336</li>
<li>Gong Z, Tasset I, Diaz A, Anguiano J, Tas E, Cui L, Kuliawat R, Liu H, Kuhn B, Cuervo AM*, Muzumdar R. Humanin is an endogenous activators of chaperone-mediated autophagy. <em><span style="text-decoration: underline;">J Cell Biol</span> </em> 217:635-647, 2018 PMID:2918752</li>
<li>Pajares M, Rojo AI, Arias E, Diaz-Carretero A, Cuervo AM, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. <em><span style="text-decoration: underline;">Autophagy</span> </em>doi: 10.1080/15548627.2018.1474992, 2018</li>
<li>Bejarano E, Murray J, Wang X, Pampliega, O, Yin D, Patel B, Yuste A, Wolkoff A, Cuervo AM. Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. <em><span style="text-decoration: underline;">Aging Cell</span> </em> doi: 10.1111/acel.12777, 2018</li>
<li>Hernandez I, Luna G, Rauch JN, Reis S, Giroux M, Karch CM, Boctor D, Sibih Y, Storm NJ, Diaz A, Kaushik S, Zekanowski C, Kang AA, Hinman G, Cerovac V, Guzman E, Zhou H, Haggarty SJ, Goate A, Fisher SK, Cuervo AM, Kosik KS Farnesyl Transferase Inhibition for the Treatment of Tauopathies.<em><span style="text-decoration: underline;"> Science TM. </span></em>2019 Mar 27;11(485). pii: eaat3005. doi: 10.1126/scitranslmed. aat3005.</li>
<li>Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Barholdy BA, Will B, Cuervo A. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. <em><span style="text-decoration: underline;">PLOs Biology</span></em>, 17(5):e3000301. doi: 10.1371/journal.pbio.3000301, 2019</li>
<li>Dong S, Aguirre-Hernandez C, Scrivo A, Eliscovich C, Arias E, Bravo-Cordero JJ, Cuervo AM. Monitoring spatiotemporal changes in chaperone-mediated autophagy in vivo. <span style="text-decoration: underline;"><em>Nature Comm.</em></span> 11(1):645. doi: 10.1038/s41467-019-14164-4, 2020</li>
<li>Dong S, Wang Q, Kao YR, Diaz A, Tasset I, Kaushik S, Thiruthuvanathan V, Zintiridou A, Nieves E, Dzieciatkowska M, Reisz JA, Gavathiotis E, D’Alessandro A, Will B, Cuervo AM. Chaperone-mediated autophagy sustains hematopoietic stems cell function. <span style="text-decoration: underline;"><em>Nature</em> </span>591:117-123, 2021 </li>
<li>Caballero B, Bourdenx M, Luengo Martin E, Diaz A, Sohn PD, Chen X, Wang C, Juste YR, Wegman S, Patel B, Young ZT, Kuo SY, Rodriguez-Navarro JA, Shao H, Lopez MG, Karch CM, Goate A, Gestwicki JE, Hyman BT, Gan L, Cuervo AM. Inhibition of chaperone-mediated autophagy by acetylated tau promotes disease propagation. <span style="text-decoration: underline;"><em>Nat. Comm.</em></span> 12(1):2238 doi: 10.1038/s41467-021-22501-9, 2021</li>
<li>Bourdenx M, Martin-Segura A, Scrivo A, Rodriguez-Navarro J, Kaushik S, Tasset I, Diaz A, Strom NJ, Xin Q, Juste YR, Stevenson E, Luengo E, Clement C, Choi SJ, Krogan NJ, Mosharov EV, Santambrogio L, Grueninger F, Collin L, Swaney DL, Sulzer D, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. <span style="text-decoration: underline;"><em>Cell</em> </span>184: 1-19 doi: 10.1016/j.cell.2021.03.048, 2021</li>
<li>Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu Vincent, Krause GJ, Jafari M, Singh R, Muñ<span lang="EN-GB" style="text-align: justify; text-indent: -27pt; font-size: 11pt; line-height: 115%; font-family: Arial, sans-serif;">oz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated </span><span style="text-align: justify; text-indent: -27pt; font-size: 11pt; line-height: 115%; font-family: Arial, sans-serif;">autophagy and the circadian clock. <em><u>Nat. Cell Biol.</u> 23(12):1255-1270 10.1038/s41556-021-00800-z. 2021, 2022</em></span></li>
<li>Madrigal-Matute J, de Bruijn J, van Kuijk K, Riascos-Bernald DF, Diaz A, Tasset I, Martín-Segura A, Gijbel MJJ, Sander B, Kaushik S, Biessen EAL, Tiano S, Bourdenx M, Krause GJ, McCracken I, Baker A, Jin H, Sibinga N, Bravo-Cordero JJ, Macian F, Singh R, Rensen PCN, Berbée JFP, Pasterkamp G, Sluimerc JC, Cuervo AM<span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">.</span> <span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;"> </span><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">Protective role of chaperone-mediated autophagy against atherosclerosis. </span><em style="font-size: 11pt; text-indent: -27pt; font-family: Arial, sans-serif; text-align: justify;"><u>Proc. Nat. Acad. Sci.</u></em><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;"> Inaugural Paper, 2022</span> <span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">119(14):e2121133119. doi: 10.1073/pnas.2121133119, 2022</span></li>
<li>Barbaro JM, Sidoli S, Cuervo AM, Berman JW. <span style="font-style: italic; font-family: Arial, sans-serif; font-size: 11pt; text-align: justify; text-indent: -27pt; line-height: 115%;">Methamphetamine Dysregulates Macrophage Functions and Autophagy to Mediate HIV Neuropathogenesis.</span> <em style="font-family: Arial, sans-serif; font-size: 11pt; text-align: justify; text-indent: -27pt;"><u>B</u></em><em style="font-family: Arial, sans-serif; font-size: 11pt; text-align: justify; text-indent: -27pt;"><u><span style="font-size: 11pt; line-height: 115%;">iomedicines</span></u></em><span style="font-style: italic; font-family: Arial, sans-serif; font-size: 11pt; text-align: justify; text-indent: -27pt; line-height: 115%;">. 10(6):1257., 2022</span></li>
<li>Krause GJ, Diaz A, Jafari M, Khawaja RR, Agullo-Pascual E, Santiago-Fernández O, Richards AL, Chen KH, Dmitriev P, Sun Y, See SK, Abdelmohsen K, Mazan-Mamczarz K, Krogan NJ, Gorospe M, Swaney DL, Sidoli S, Bravo-Cordero JJ, Kampmann M, Cuervo AM<span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">. Reduced endosomal microautophagy activity in aging associates with enhanced exocyst-mediated protein secretion. </span><em style="font-size: 11pt; text-indent: -27pt; font-family: Arial, sans-serif; text-align: justify;"><u>Aging Cell.</u> </em><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">e13713. doi: 10.1111/acel.13713, 2022</span></li>
<li>Rovira M, Sereda R, Pladevall-Morera D, Ramponi V, Marin I, Maus M, Madrigal-Matute J, Díaz A, García F, Muñoz J, Cuervo AM, Serrano M. The lysosomal proteome of senescent cells contributes to the senescence secretome. <em><u>Aging Cell.</u></em><span style="font-size: 11pt; line-height: 115%;"> e13707. doi: 10.1111/acel.13707, 2022</span></li>
<li>Gomez-Sintes R Xin Q, Diaz A, Garner TP, Cotto-Rios XM, Wu Y, McCabe M, Dong S, Reynolds CA, Patel B de la Villa P, Macian F, Boya P, Gavathiotis E, <span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">Cuervo</span> <span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">AM</span><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">. Targeting NCoR-RAR interaction activates chaperone-mediated autophagy and protects against retinal degeneration. </span><em style="font-size: 11pt; text-indent: -27pt; font-family: Arial, sans-serif; text-align: justify;"><u>Nat. Comm</u></em><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">. 13(1): 4220, doi: 10.1038/s41467-022-31869-1, 2022</span></li>
<li>Kaushik S, Juste YR, Lindenau K, Dong S, Macho-Gonzales A, Santiago-Fernandez O, McCabe M, Singh R, Gavathiotis E, <span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">Cuervo AM</span><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;">. Chaperone-mediated autophagy regulates adipocyte differentiation. </span><em style="font-size: 11pt; text-indent: -27pt; font-family: Arial, sans-serif; text-align: justify;"><u>Sci. Adv.</u></em><span style="font-size: 11pt; text-indent: -27pt; font-style: italic; font-family: Arial, sans-serif; text-align: justify;"> 8 (46) DOI: 10.1126/sciadv.abq2733 , 2022</span></li>
</ol>
<p><em>RECENT REVIEWS</em></p>
<ol>
<li>Kaushik S, Cuervo AM. Proteostasis and aging. <span style="text-decoration: underline;"><em>Nat Med.</em></span> 21:1406-15, 2015</li>
<li>Tekirdag KA, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. <em><span style="text-decoration: underline;">J. Biol. Chem</span>. </em> 293:5414-5424, 2018</li>
<li>Kaushik K, Cuervo AM. The coming of age of Chaperone-mediated autophagy. <em><span style="text-decoration: underline;">Nat. Rev. Cell. Mol. Biol.</span></em> Doi: doi.org/10.1038/s41580-018-0001-6, 2018</li>
<li>Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. <em><span style="text-decoration: underline;">Lancet Neuro</span></em><span style="text-decoration: underline;">l</span> 17(9):802-815, 2018</li>
<li>Arias E, Cuervo AM. Pros and cons of chaperone-mediated autophagy in cancer. <span style="text-decoration: underline;"><em>Trends. Endocrinol Metab</em></span>. S1043-2760(19)30208-5. doi: 10.1016/j.tem.2019.09.007, 2019</li>
<li>Krause GJ, Cuervo AM. Assessment of mammalian endosomal microautophagy. <span style="text-decoration: underline;"><em>Methods Cell Bio</em></span><em>l</em> 164:167-185, 2021</li>
<li><span style="font-variant-numeric: normal; font-variant-east-asian: normal; font-stretch: normal; font-size: 7pt; line-height: normal; font-family: 'Times New Roman';"> </span><span style="text-align: justify; text-indent: -22.5pt; font-size: 11pt; font-family: Arial, sans-serif;">Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, Cuervo AM. Autophagy and the Hallmarks of Aging. <em><u>Ageing Res Rev.</u></em></span> <span style="text-align: justify; text-indent: -22.5pt; font-size: 11pt; font-family: Arial, sans-serif;"> doi: 10.1016/j.arr.2021.101468, 2022</span></li>
<li>Jafari, M., McCabe, M, <strong>Cuervo AM</strong>. <span style="text-align: justify; text-indent: -22.5pt; font-family: Arial, sans-serif; font-size: 11pt;">Chaperone-mediated autophagy: mechanisms and physiological relevance <em><u>Current. Opin. Physiol</u>. </em>Available online 26 September 2022. doi: doi.org/10.1016/j.cophys.2022.100597</span></li>
</ol>