Fluorescent Proteins               

Intensive searches for novel green fluorescent protein (GFP)-like fluorescent proteins have identified more than 150 distinct genes that, together with its mutants, cover the excitation range from 380 to 600 nanometers (nm) and the emission range from 440 to 650 nm (see table below). Despite spectral diversity, a family of GFP-like proteins possesses common significant structural, biochemical and photophysical features. Many of these spectroscopically active proteins are developed to commercially available genetically-encoded fluorescent probes. In comparison to other natural pigments and fluorophores, GFP-like proteins stand out because they form internal chromophores without requiring accessory cofactors, external enzymatic catalysis or substrates other than molecular oxygen. It gives GFP-like proteins many advantages including that chromophore formation is possible in live organisms, tissues or cells while maintaining their integrity as well as molecular, organelle and tissue targeting and specificity.

Fluorescent proteins can be divided into several fluorescent groups with respect to the appearance of the purified protein to the human eye:

  • Blue (below 460 nm, BFP)
  • Cyan (460-500 nm, CFP)
  • Green (~500-520 nm, GFP)
  • Yellow (~520-550 nm, YFP)
  • Orange (~550-570 nm, OFP)
  • Red (~570-620 nm, RFP)
  • Far red (above 620 nm, FRFP)

In addition, several fluorescent proteins exhibit photoactivatable (PA-FP) or photoswitchable behavior and therefore are called photoactivatable (PA-FP) or photoswitchable (PS-FP) fluorescent proteins, respectively. These proteins are originally either dark (PA-FP) or fluoresce at one wavelength (PS-FP) but become fluorescent or fluorescent at a distinct wavelength, respectively, upon irradiation with an intense violet or blue light. Developmental research efforts are ongoing to improve the brightness and stability of fluorescent proteins, thus improving their overall usefulness. Flow cytometers currently available at the core facility allow for simultaneous detection of many fluorescent proteins of different fluorescent groups simultaneously expressed in the cells.

The following list is not exhaustive. It illustrates the properties of recommended fluorescent proteins that were available at the time that the table was last updated, which happens regularly.

Recommended for Flow Cytometry Fluorescent Proteins

Protein Names Reference or Source Spectral Properties Oligomeric State AECOM core facility flow cytometer
Peak Excitation
nm
Peak Emission
nm
Brightness (relative to eGFP) FACScan LRSII MoFlo MoFlo XDP FACSAria Forcheimer FACSAria
Blue Fluorescent Proteins
Sirius Tomosugi et at., Nat. Methods, 2009, 6, 351-353 355 424 0.11 monomer  
EBFP2 Ai et al., Biochemistry, 2007, 46, 5904 383 445 0.60 monomer  
Azurite Mena et al., Nat. Biotechnol., 2006, 24, 1569 383 448 0.43 monomer  
TagBFP Subach et al., Chem Biol, 2008, 59, 116-1124 www.evrogen.com 400 456 0.99 monomer  
Cyan Fluorescent Proteins
mTarquoise Goedhart et al., Nat. Methods, 2010, 7, 137-139 434 474 0.75 monomer  
Cerulean Rizzo et al., Nat. Biotechnol., 2004, 22, 445 433 475 0.79 monomer  
ECFP www.clontech.com 439 476 0.39 monomer  
CyPet Nguyen et al., Nat. Biotechnol., 2005, 23, 355 435 477 0.53 monomer  
mTFP1 Ai et al., Biochem. J., 2006, 400, 531 462 492 1.58 dimer   ✓ * ✓ * ✓ *
Green Fluorescent Proteins
TagGFP2 www.evrogen.com 482 505 1 monomer
EGFP www.clontech.com 484 507 1 monomer
Emerald Cubitt et al., Methods Cell. Biol., 1999, 58, 19 487 509 1.16 monomer
Superfolder GFP Pedelacq et al., Nat. Biotechnol, 2006, 24, 79-88 485 510 1.6 monomer
Yellow Fluorescent Proteins
EYFP www.clontech.com 514 527 1.51 monomer
Venus Nagai et al., Nat. Biotechnol., 2002, 20, 87 515 528 1.56 monomer
mCitrine Griesbeck et al., J. Biol. Chem., 2001, 276, 29188 516 529 1.74 monomer
YPet Nguyen et al., Nat. Biotechnol., 2005, 23, 355 517 530 2.38 monomer
TurboYFP www.evrogen.com 525 538 1.65 dimer
Orange Fluorescent Proteins
mKO Karasawa, S., et al., Biochem J, 2004, 381, 307-312 www.mblintl.com 548 559 0.92 monomer      
E2-Orange Strack et al., BMC Biotechnol, 2009, 9, 32 540 561 0.61 tetramer      
mOrange Shaner et al., Nat. Biotechnol., 2004, 22, 1524 548 562 1.46 monomer      
mKOk Tsutsui H, et al., Nat. Methods 2008, 5, 683-685 551 563 1.9 monomer      
Red Fluorescent Proteins
dTomato Shaner et al., Nat. Biotechnol., 2004, 22, 1524 554 581 1.42 dimer    
TagRFP Merzlyak et al., Nat. Methods, 2007, 4, 555
www.evrogen.com
555 584 1.46 monomer    
DsRed-
Express2
Strack et al., Nat Methods. 2008, 5, 955-957 www.clontech.com 554 591 0.45 tetramer    
mStrawberry Shaner et al., Nat. Biotechnol., 2004, 22, 1524 574 596 0.78 monomer    
mCherry Shaner et al., Nat. Biotechnol., 2004, 22, 1524 587 610 0.47 monomer    
Far-Red Fluorescent Proteins
Katushka2 Shcherbo et al., Biochem J, 2009, 418, 567-574 www.evrogen.com 588 635 0.73 dimer          
mKate2 Shcherbo et al., Biochem J, 2009, 418, 567-574 www.evrogen.com 588 633 0.74 monomer          
E2-
Crimson
Strack et al., Biochem, 2009, 48, 8279-8281 www.clontech.com 611 646 0.86 tetramer      
eqFP650 Shcherbo et al., Nat. Methods, 2010 592 650 0.46 dimer          
mNeptune Lin et al., Chem Biol, 2009, 16, 1169-79 600 650 0.40 monomer          
Near-infrared Fluorescent Proteins
eqFP670 Shcherbo et al., Nat. Methods, 2010 605 670 0.12 dimer          
TagRFP657 Morozova et al., Biophys J, 2010, 99, L13-L15 611 657 0.10 monomer      
iRFP Filonov et al., Nat Biotechnology, 2011, 29, 757–76 690 713 0.18 dimer        
Large Stokes Shift Green and Red Flurescent Proteins
T-Sapphire Zapata-Hommer et al., BMC Biotechnol., 2003, 3, 5 399 511 0.78 monomer  
mAmertrine Ai et al., Nat Methods, 2008, 5, 401-403 406 526 0.78 monomer  
LSSmKate2 Piatkevich et al., PNAS, 2010, 107, 5369-5374 460 605 0.13 monomer   ✓ * ✓ *
mKeima Kogure et al., Nat. Biotechnol., 2006, 24, 577 www.mblintl.com 440 620 0.10 dimer   ✓ * ✓ *
Flurescent Timers that change color from Blue to Red with time
Slow-FT      Subach et al., Nat Chem Biol, 2009, 5, 118-126
blue form      402 465 0.35 monomer  
red form      583 604 0.13    
Medium-FT      Subach et al., Nat Chem Biol, 2009, 5, 118-126
blue form      401 464 0.55 monomer  
red form      579 600 0.17    
Fast-FT      Subach et al., Nat Chem Biol, 2009, 5, 118-126
blue form      403 466 0.44 monomer  
red form      583 606 0.20    
mk-Go      Tsuboi et al., Mol Biol Cell, 2010, 21, 87-94
green form      500 509 n/a monomer
orange form      548 561 n/a      
 
PA-GFP      Patterson et al., Science, 2002, 297, 1873
before activation      400 515 0.08 monomer  
after activation      504 517 0.42  
PS-CFP2      www.evrogen.com
before activation      400 470 0.26 monomer  
after activation      490 511 0.33  
Dronpa      www.mblintl.com
before activation      n/a n/a <0.01 monomer n/a n/a n/a n/a n/a n/a
after activation      503 518 2.45  
tdEosFP      Nienhaus et al., PNAS, 2005, 102, 9156
before activation      506 516 1.65 pseudomonomer
after activation      569 581 0.59    
mEos2      McKinney et al., Nat Methods, 2009, 6, 131
before activation      506 519 1.4 monomer
after activation      573 584 0.90    
Dendra2      www.evrogen.com
before activation      490 507 0.45 monomer
after activation      553 573 0.39    
PAmCherry      Subach et al., Nat Methods, 2009, 6, 153-159
before activation      No No No monomer            
after activation      564 594 0.25    
PATagRFP      Subach et al., J Am Chem Soc, 2010, 132, 6481-6491
before activation      No No No monomer            
after activation      562 595 0.75    
rsTagRFP      Subach et al., Chem Biol, 2010, 17, 745-755
OFF      567 585 0.005 monomer    
ON      567 585 0.12    
  * Excitation is suboptimal using the cytometer's existing laser lines.

General Reviews on Modern Fluorescent Proteins:
1.   Shcherbakova D.M. and Verkhusha V.V. Chromophore chemistry of fluorescent proteins controlled by light. Curr. Opin. Chem. Biol. 2014, 20: 60-68.
2.   Shcherbakova D.M. et al. Red fluorescent proteins: advanced imaging applications and future design. Angew. Chem. Int. Ed. 2012, 51: 10724-10738.
3.   Miyawaki A. et al. Red fluorescent proteins: chromophore formation and cellular applications. Curr. Opin. Struct. Biol. 2012, 22: 679-688.
4.   Chudakov D.M. et al. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 2010, 90, 1103-1163.
5.   Day R.N. and Davidson M.W. The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev. 2009, 38, 2887-921.
   
Use of Fluorescent Proteins in Flow Cytometry:
1.   Telford W.G. et al. Flow cytometry of fluorescent proteins. Methods 2012, 56: 318-330.
2.   Piatkevich K.D. and Verkhusha V.V. Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell. Biol. 2011, 104: 431-461.
   
Internet resources and commercially available fluorescent proteins:
1.   Florida State University
2.   Clontech Laboratories
3.   Evrogen
4.   Invitrogen Molecular Probes
5.   MBL International
6.   Non-profit Addgene
   
With further questions on fluorescent proteins, contact Dr. Vlad Verkhusha at the Albert Einstein College of Medicine's Department of Anatomy and Structural Biology.

Jinghang Zhang is solely responsible for the content of this site. Comments, concerns and questions regarding it should be addressed to her.

Click here to log in