Stable Isotope & Metabolomics Core

Module #5

Bile Acids

bile acids assay

Bile acids are synthesized from cholesterol through both classical and alternative pathways. In the alternative pathway, the side chain oxidation of cholesterol precedes the steroid ring modifications, first yielding 24-, 25-, and 27-hydroxycholesterol metabolites, opposite to the process in the classical pathway. The alternative and classical pathway bile acids share the primary bile acid chenodeoxycholic acid, with 12-a-hydroxylation of chenodeoxycholic acid via CYP8B1to cholic acid. Modifications of bile acids can affect their properties and their ability to activate bile acid receptors. Dysregulation of bile acid synthesis can be seen in inborn errors of metabolism, insulin resistance, hepatocellular Ca and chronic ethanol consumption. Perturbations in the microbiome also affect bile acid pool size and composition (see references below). This panel surveys conditions of bile acid dysregulation.

For examples of this module’s utility for Core customers, see:

Bowden, J. A., Heckert, A., Ulmer, C. Z., Jones, C. M., Koelmel, J. P., Abdullah, L., Ahonen, L., Alnouti, Y., Armando, A., Asara, J. M., Bamba, T., Barr, J. R., Bergquist, J., Borchers, C. H., Brandsma, J., Breitkopf, S. B., Cajka, T., Cazenave-Gassiot, A., Checa, A., Cinel, M. A., Colas, R. A., Cremers, S., Dennis, E. A., Evans, J. E., Fauland, A., Fiehn, O., Gardner, M. S., Garrett, T. J., Gotlinger, K. H., Han, J., Huang, Y., Neo, A. H., Hyotylainen, T., Izumi, Y., Jiang, H., Jiang, H., Jiang, J., Kachman, M., Kiyonami, R., Klavins, K., Klose, C., Kofeler, H. C., Kolmert, J., Koal, T., Koster, G., Kuklenyik, Z., Kurland, I. J., Leadley, M., Lin, K., Maddipati, K. R., McDougall, D., Meikle, P. J., Mellett, N. A., Monnin, C., Moseley, M. A., Nandakumar, R., Oresic, M., Patterson, R. E., Peake, D., Pierce, J. S., Post, M., Postle, A. D., Pugh, R., Qui, Y., Quehenberger, O., Ramrup, P., Rees, J., Rembiesa, B., Reynaud, D., Roth, M. R., Sales, S., Schuhmann, K., Schwartzman, M. L., Serhan, C. N., Shevchenko, A., Somerville, S. E., John-Williams, L. S., Surma, M. A., Takeda, H., Thakare, R., Thompson, J. W., Torta, F., Triebl, A., Trotzmuller, M., Ubhayasekera, S. J. K., Vuckovic, D., Weir, J. M., Welti, R., Wenk, M. R., Wheelock, C. E., Yao, L., Yuan, M., Zhao, X. H. & Zhou, S. (2017) Harmonizing Lipidomics: NIST Interlaboratory Comparison Exercise for Lipidomics using Standard Reference Material 1950 Metabolites in Frozen Human Plasma, Journal of lipid research.

Metabolite Name  Pubchem/Chemspider ID Pathway
Taurocholic acid (TCA) 6675  Bile Acid Biosynthesis 
Lithocholate (LCA) 9903  Bile Acid Biosynthesis 
Glycolithocholate (GLCA) 115245  Bile Acid Biosynthesis 
6,7-diketolithocholic acid 21403088  Bile Acid Biosynthesis 
7,12-diketolithocholic acid 22213549  Bile Acid Biosynthesis 
Glycocholate (GCA) 10140  Bile Acid Biosynthesis 
Glycoursodeoxycholic acid (GUDCA) 12310288  Bile Acid Biosynthesis 
Glycodeoxycholate (GDCA) 3035026  Bile Acid Biosynthesis 
Glycochenodeoxycholate (GCDCA) 12544  Bile Acid Biosynthesis 
Glycohyodeoxycholate (GHDCA) Steraloids
C0867-000
 
Bile Acid Biosynthesis 
Taurochenodeoxycholate (TCDCA) 387316  Bile Acid Biosynthesis 
Taurohyodeoxycholate (THDCA) 70686868  Bile Acid Biosynthesis 
Taurodeoxycholate (TDCA) 10594  Bile Acid Biosynthesis 
Deoxycholate (DCA) 222528  Bile Acid Biosynthesis 
Taurolithocholate (TLCA) 439763  Bile Acid Biosynthesis 
Omegamuricohlic acid (O-MCA)

 

5283851  Bile Acid Biosynthesis 
Gamma muricholic acid (G-MCA)

 

92805  Bile Acid Biosynthesis 
Beta-muricholic acid (ß-MCA) 5283853  Bile Acid Biosynthesis 
Alpha muricholic acid (a-MCA) 53477700  Bile Acid Biosynthesis 
Cholic acid (CA) 221493  Bile Acid Biosynthesis 
Tauro-a-muricholic acid (Ta-MCA) 101657566  Bile Acid Biosynthesis 
Tauro-ß-muricholic acid (Tß-MCA) 168408  Bile Acid Biosynthesis 

References:

  1. More detailed pathways see Bile acid Biosynthesis, Primary Bile acid Biosynthesis, Secondary Bile acid Biosynthesis 
  2. Human insulin resistance is associated with increased plasma levels of 12a-hydroxylated bile acids Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Diabetes. 2013 Dec; 62(12):4184-91. doi: 10.2337/db13-0639. Epub 2013 Jul 24 
  3. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Kurland IJ, Accili D, Burant C, Fischer SM, Kahn BB, Newgard CB, Ramagiri S, Ronnett GV, Ryals JA, Sanders M, Shambaugh J, Shockcor J, Gross SS. Ann N Y Acad Sci. 2013 May;1287:1-16. doi: 10.1111/nyas.12116. Epub 2013 May 9. 
  4. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Wang X, Xu LX, Yen Y, Liu P, Jia W. Mol Cell Proteomics. 2011 Jul; 10(7):M110.004945. doi: 10.1074/mcp.M110.004945. Epub 2011 Apr 25. Erratum in: Mol Cell Proteomics. 2011 Nov; 10(11). doi:10.1074/mcp.A110.004945. 
  5. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption.Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, Chen H, Zhao X, Zhang S, Zhou Z, Zeisel SH, Jia W. FASEB J. 2013 Sep;27(9):3583-93. doi: 10.1096/fj.13-231860. Epub 2013 May 24. 
  6. Bile acids and the gut microbiome. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS.Curr Opin Gastroenterol. 2014 May;30(3):332-8 

< Module 4 | Module 6 >

Department Office

Irwin Kurland, M.D.
Director
Room 374, Price Center/Block Research Pavilion

 

Yunping Qiu. Ph.D.
Operations Manager
Room 368, Price Center/Block Research Pavilion

 

Min Cai
Mass Spectrometer Operator
Room 368, Price Center/Block Research Pavilion

 

Xueliang Du, Ph.D.
Seahorse Technician
Room 529, Forchheimer

 
 

Request Services

Mass Spectrometer: xueqing.zhao@einsteinmed.org 

Seahorse: xueliang.du@einsteinmed.org